Ciara Treacy, Sophie C Andrews, Jacob M Levenstein
{"title":"Relationships between GABA + and Glx concentrations with age and inhibition in healthy older adults.","authors":"Ciara Treacy, Sophie C Andrews, Jacob M Levenstein","doi":"10.1007/s00429-025-03017-0","DOIUrl":null,"url":null,"abstract":"<p><p>Inhibition represents a core executive function which underlies the ability to suppress interfering or distracting stimuli, thereby building resistance against task-irrelevant information. However, the impact of ageing on inhibitory functioning and the role of neuroplasticity - largely driven by predominant excitatory (glutamatergic) and inhibitory (GABAergic) neurochemicals - remains poorly understood. This study investigated age relationships with neurochemical concentrations (GABA + and Glx) and their associations with inhibitory sub-components in healthy ageing. Participants completed three inhibition tasks (flanker, Stroop, go/no-go), each measuring a different sub-component process, via the PsyToolkit platform. MRS data were acquired in the sensorimotor (SM1; n = 71, mean age (SD) = 68.3 (± 9.7) years, 39 females) and prefrontal (PFC; n = 58, mean age (SD) = 67.6 (± 9.6) years, 30 females) regions using a HERMES sequence and analysed using OSPREY's pipeline. After correcting for gender and education, semi-partial correlations revealed no significant relationships between age and GABA + or Glx concentrations in either the SM1 or PFC. Furthermore, after correcting for age, gender and education, partial correlations identified a significant negative relationship between SM1 Glx concentrations and go/no-go error rates, such that greater concentrations of SM1 Glx were associated with greater go/no-go accuracy. The null age-neurochemical results suggest that GABA + and Glx may not uniformly decline during healthy ageing, indicating a more nuanced relationship than previously reported. In addition, our neurochemical-behavioural findings provide neurochemically-and-spatially specific evidence that SM1 Glx concentrations may be important for response inhibition. This result indicates a role for the glutamatergic system in supporting inhibition, independent of age.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 8","pages":"149"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-025-03017-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inhibition represents a core executive function which underlies the ability to suppress interfering or distracting stimuli, thereby building resistance against task-irrelevant information. However, the impact of ageing on inhibitory functioning and the role of neuroplasticity - largely driven by predominant excitatory (glutamatergic) and inhibitory (GABAergic) neurochemicals - remains poorly understood. This study investigated age relationships with neurochemical concentrations (GABA + and Glx) and their associations with inhibitory sub-components in healthy ageing. Participants completed three inhibition tasks (flanker, Stroop, go/no-go), each measuring a different sub-component process, via the PsyToolkit platform. MRS data were acquired in the sensorimotor (SM1; n = 71, mean age (SD) = 68.3 (± 9.7) years, 39 females) and prefrontal (PFC; n = 58, mean age (SD) = 67.6 (± 9.6) years, 30 females) regions using a HERMES sequence and analysed using OSPREY's pipeline. After correcting for gender and education, semi-partial correlations revealed no significant relationships between age and GABA + or Glx concentrations in either the SM1 or PFC. Furthermore, after correcting for age, gender and education, partial correlations identified a significant negative relationship between SM1 Glx concentrations and go/no-go error rates, such that greater concentrations of SM1 Glx were associated with greater go/no-go accuracy. The null age-neurochemical results suggest that GABA + and Glx may not uniformly decline during healthy ageing, indicating a more nuanced relationship than previously reported. In addition, our neurochemical-behavioural findings provide neurochemically-and-spatially specific evidence that SM1 Glx concentrations may be important for response inhibition. This result indicates a role for the glutamatergic system in supporting inhibition, independent of age.
期刊介绍:
Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.