Heterogeneity phenotypes in recurrent glioblastoma: a multimodal MRI-based spatial mapping framework for precision treatment.

IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Yan Zhu, Dian Huang, Yang Ji, Ranchao Wang, Yang Li, Yuhao Xu, Yan Zhuang, Zhe Liu, Yuefeng Li, Wei Wang
{"title":"Heterogeneity phenotypes in recurrent glioblastoma: a multimodal MRI-based spatial mapping framework for precision treatment.","authors":"Yan Zhu, Dian Huang, Yang Ji, Ranchao Wang, Yang Li, Yuhao Xu, Yan Zhuang, Zhe Liu, Yuefeng Li, Wei Wang","doi":"10.1186/s12880-025-01929-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To develop a multimodal magnetic resonance imaging (MRI)-based spatial mapping framework for quantitatively characterizing intratumoral heterogeneity in recurrent glioblastoma (rGBM), identifying distinct imaging subregions, and classifying heterogeneity phenotypes predictive of treatment response and survival outcomes.</p><p><strong>Methods: </strong>A total of 140 rGBM patients were recruited and underwent standardized diffusion-weighted imaging (DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Pixel-wise colocalization of apparent diffusion coefficient (ADC) and DCE-MRI features identified four Multimodal Imaging Subregions (MIS). Entropy and Moran's I quantified heterogeneity, and hierarchical clustering defined imaging phenotypes. Treatment response to 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU), bevacizumab (Bev) + stereotactic radiotherapy (SRT), and Bev + CCNU was assessed by volumetric and component-level changes. Survival analyses were performed using Kaplan-Meier and multivariate Cox models.</p><p><strong>Results: </strong>MIS4, defined by low ADC and slow-rising enhancement, was consistently treatment-resistant. Three imaging phenotypes with distinct heterogeneity patterns demonstrated significant prognostic stratification across regimens. Phenotype A showed the best outcomes under Bev-based regimens, while Phenotype B responded better to CCNU. Imaging phenotypes independently predicted progression-free survival (PFS) and overall survival (OS).</p><p><strong>Conclusion: </strong>This framework enables spatially resolved, phenotype-based analysis of rGBM heterogeneity using routine MRI. Imaging phenotypes serve as non-invasive biomarkers to guide personalized treatment planning and outcome prediction in recurrent glioblastoma.</p><p><strong>Clinical trial registration number: </strong>Not applicable.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"386"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12465940/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01929-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: To develop a multimodal magnetic resonance imaging (MRI)-based spatial mapping framework for quantitatively characterizing intratumoral heterogeneity in recurrent glioblastoma (rGBM), identifying distinct imaging subregions, and classifying heterogeneity phenotypes predictive of treatment response and survival outcomes.

Methods: A total of 140 rGBM patients were recruited and underwent standardized diffusion-weighted imaging (DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Pixel-wise colocalization of apparent diffusion coefficient (ADC) and DCE-MRI features identified four Multimodal Imaging Subregions (MIS). Entropy and Moran's I quantified heterogeneity, and hierarchical clustering defined imaging phenotypes. Treatment response to 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU), bevacizumab (Bev) + stereotactic radiotherapy (SRT), and Bev + CCNU was assessed by volumetric and component-level changes. Survival analyses were performed using Kaplan-Meier and multivariate Cox models.

Results: MIS4, defined by low ADC and slow-rising enhancement, was consistently treatment-resistant. Three imaging phenotypes with distinct heterogeneity patterns demonstrated significant prognostic stratification across regimens. Phenotype A showed the best outcomes under Bev-based regimens, while Phenotype B responded better to CCNU. Imaging phenotypes independently predicted progression-free survival (PFS) and overall survival (OS).

Conclusion: This framework enables spatially resolved, phenotype-based analysis of rGBM heterogeneity using routine MRI. Imaging phenotypes serve as non-invasive biomarkers to guide personalized treatment planning and outcome prediction in recurrent glioblastoma.

Clinical trial registration number: Not applicable.

复发性胶质母细胞瘤的异质性表型:基于多模态mri的精确治疗空间制图框架。
背景:开发一种基于多模态磁共振成像(MRI)的空间图谱框架,用于定量表征复发性胶质母细胞瘤(rGBM)的瘤内异质性,识别不同的成像亚区,并对预测治疗反应和生存结果的异质性表型进行分类。方法:共招募140例rGBM患者,进行标准化弥散加权成像(DWI)和动态对比增强磁共振成像(DCE-MRI)检查。视扩散系数(ADC)和DCE-MRI特征的像素共定位确定了四个多模态成像子区域(MIS)。熵和Moran's I量化异质性,分层聚类定义成像表型。1-(2-氯乙基)-3-环己基-1-亚硝基脲(CCNU)、贝伐单抗(Bev) +立体定向放疗(SRT)和Bev + CCNU的治疗反应通过体积和成分水平变化来评估。生存率分析采用Kaplan-Meier和多变量Cox模型。结果:由低ADC和缓慢上升增强定义的MIS4始终具有治疗耐药性。三种具有明显异质性的影像学表型显示了不同治疗方案的显著预后分层。表现型A在以bev为基础的方案下表现出最好的结果,而表现型B对CCNU的反应更好。成像表型独立预测无进展生存期(PFS)和总生存期(OS)。结论:该框架可以通过常规MRI对rGBM异质性进行空间分辨、基于表型的分析。成像表型可作为非侵入性生物标志物,指导复发性胶质母细胞瘤的个性化治疗计划和预后预测。临床试验注册号:不适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信