Simon M Moe, Alicia Taylor, Alan P Robertson, David Van Vactor, Elizabeth M McNeill
{"title":"MiR-92 Controls Synaptic Development Through Glial Vha55 Regulation.","authors":"Simon M Moe, Alicia Taylor, Alan P Robertson, David Van Vactor, Elizabeth M McNeill","doi":"10.3390/biom15091330","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) have emerged as important biomarkers for complex neurological conditions. Modifications in synaptic morphology characterize several of these disease states, indicating a possible role of miRNA in modulating synaptic formation and plasticity. Within the third-instar larvae of Drosophila melanogaster, we uncovered a functional role for highly human-conserved miR-92 in synaptogenesis of the glutamatergic peripheral nervous system. Loss of miR-92 results in underdeveloped synaptic architecture, coinciding with significantly reduced physiological activity. We demonstrate a novel role for miR-92 glial-specific expression to support synaptic growth function and plasticity. Modifications of miR-92 within glial tissue result in aberrant glial barrier properties, including an increased uptake of external dyes. Within the glia, miR-92 regulates a V-ATPase subunit (Vha55), impairing the glial cells from forming appropriate insulating layers around the nervous system. These modifications may impact how the nervous system adapts to its environment, increasing immature 'ghost bouton' budding and impairing responses to changes in environmental conditions. Our work highlights the importance of glial-specific miR-92 on synaptic development, affecting glial health and function through its downstream target Vha55, and demonstrates a novel mechanism for glia in synaptogenesis and homeostatic plasticity.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467677/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15091330","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
MicroRNAs (miRNAs) have emerged as important biomarkers for complex neurological conditions. Modifications in synaptic morphology characterize several of these disease states, indicating a possible role of miRNA in modulating synaptic formation and plasticity. Within the third-instar larvae of Drosophila melanogaster, we uncovered a functional role for highly human-conserved miR-92 in synaptogenesis of the glutamatergic peripheral nervous system. Loss of miR-92 results in underdeveloped synaptic architecture, coinciding with significantly reduced physiological activity. We demonstrate a novel role for miR-92 glial-specific expression to support synaptic growth function and plasticity. Modifications of miR-92 within glial tissue result in aberrant glial barrier properties, including an increased uptake of external dyes. Within the glia, miR-92 regulates a V-ATPase subunit (Vha55), impairing the glial cells from forming appropriate insulating layers around the nervous system. These modifications may impact how the nervous system adapts to its environment, increasing immature 'ghost bouton' budding and impairing responses to changes in environmental conditions. Our work highlights the importance of glial-specific miR-92 on synaptic development, affecting glial health and function through its downstream target Vha55, and demonstrates a novel mechanism for glia in synaptogenesis and homeostatic plasticity.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.