{"title":"Antibiofilm Inhibitor Ferulic Acid as an Antibacterial Synergist Against <i>Escherichia coli</i>.","authors":"Zhijin Zhang, Jing Xu, Xiaojuan Wei, Rongbin Hu, Zhen Zhu, Zixuan Shang, Weiwei Wang, Bing Li, Yubin Bai, Jiyu Zhang","doi":"10.3390/biom15091253","DOIUrl":null,"url":null,"abstract":"<p><p><i>Escherichia coli</i> (<i>E. coli</i>) is a severe foodborne pathogen, and the formation of its biofilm can enhance bacterial virulence and reduce antibiotic sensitivity, posing a significant threat to human and animal health. Ferulic Acid (FA) is a natural active product that has been proven to possess various biological activities, including anti-inflammatory, antioxidant, and antitumor properties. This study evaluated the inhibitory effect of FA on the biofilm formation of <i>E. coli</i> through crystal violet (CV) staining and scanning electron microscopy (SEM) and investigated the synergistic effect of FA with antibiotics, using the alamar blue (AB) assay. In addition, the regulatory effect of FA on the transcription of biofilm-related genes was analyzed using qRT-PCR technology. The results showed that FA could significantly inhibit biofilm formation, reduce the production of extracellular polymeric substances (EPS), and weaken bacterial motility, without affecting bacterial growth and metabolic activity. qRT-PCR analysis revealed that FA significantly downregulated the expression of curli-related gene <i>csgD</i>, flagella-related genes (<i>flhC</i>, <i>flhD</i>, and <i>motA</i>), and type I fimbriae gene <i>fimA</i>, while upregulating the transcription of c-di-GMP-related genes (<i>pdeR</i>, <i>pdeA</i>, and <i>dosP</i>). It is noteworthy that FA exhibits significant synergistic antibacterial effects when combined with clinically commonly used antibiotics, including sodium fosfomycin, ceftriaxone, gentamicin, and tetracycline, with the most prominent synergistic effect observed in the combination of FA and sodium fosfomycin. These results confirm that FA possesses notable anti-biofilm activity and novel synergistic antibacterial properties, providing a potential therapeutic strategy for treating <i>E. coli</i> infections.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 9","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467221/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15091253","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Escherichia coli (E. coli) is a severe foodborne pathogen, and the formation of its biofilm can enhance bacterial virulence and reduce antibiotic sensitivity, posing a significant threat to human and animal health. Ferulic Acid (FA) is a natural active product that has been proven to possess various biological activities, including anti-inflammatory, antioxidant, and antitumor properties. This study evaluated the inhibitory effect of FA on the biofilm formation of E. coli through crystal violet (CV) staining and scanning electron microscopy (SEM) and investigated the synergistic effect of FA with antibiotics, using the alamar blue (AB) assay. In addition, the regulatory effect of FA on the transcription of biofilm-related genes was analyzed using qRT-PCR technology. The results showed that FA could significantly inhibit biofilm formation, reduce the production of extracellular polymeric substances (EPS), and weaken bacterial motility, without affecting bacterial growth and metabolic activity. qRT-PCR analysis revealed that FA significantly downregulated the expression of curli-related gene csgD, flagella-related genes (flhC, flhD, and motA), and type I fimbriae gene fimA, while upregulating the transcription of c-di-GMP-related genes (pdeR, pdeA, and dosP). It is noteworthy that FA exhibits significant synergistic antibacterial effects when combined with clinically commonly used antibiotics, including sodium fosfomycin, ceftriaxone, gentamicin, and tetracycline, with the most prominent synergistic effect observed in the combination of FA and sodium fosfomycin. These results confirm that FA possesses notable anti-biofilm activity and novel synergistic antibacterial properties, providing a potential therapeutic strategy for treating E. coli infections.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.