Pathomics-based machine learning models for optimizing LungPro navigational bronchoscopy in peripheral lung lesion diagnosis: a retrospective study.

IF 2.9 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Feng Ying, Ya Bao, Xiaoyu Ma, Yiwen Tan, Shengjin Li
{"title":"Pathomics-based machine learning models for optimizing LungPro navigational bronchoscopy in peripheral lung lesion diagnosis: a retrospective study.","authors":"Feng Ying, Ya Bao, Xiaoyu Ma, Yiwen Tan, Shengjin Li","doi":"10.1186/s12938-025-01440-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To construct a pathomics-based machine learning model to enhance the diagnostic efficacy of LungPro navigational bronchoscopy for peripheral pulmonary lesions and to optimize the management strategy for LungPro-diagnosed negative lesions.</p><p><strong>Methods: </strong>Clinical data and hematoxylin and eosin (H&E)-stained whole slide images (WSIs) were collected from 144 consecutive patients undergoing LungPro virtual bronchoscopy at a single institution between January 2022 and December 2023. Patients were stratified into diagnosis-positive and diagnosis-negative cohorts based on histopathological or etiological confirmation. An artificial intelligence (AI) model was developed and validated using 94 diagnosis-positive cases. Logistic regression (LR) identified associations between clinical/imaging characteristics and malignant pulmonary lesion risk factors. We implemented a convolutional neural network (CNN) with weakly supervised learning to extract image-level features, followed by multiple instance learning (MIL) for patient-level feature aggregation. Multiple machine learning (ML) algorithms were applied to model the extracted features. A multimodal diagnostic framework integrating clinical, imaging, and pathomics data were subsequently developed and evaluated on 50 LungPro-negative patients to assess the framework's diagnostic performance and predictive validity.</p><p><strong>Results: </strong>Univariable and multivariable logistic regression analyses identified that age, lesion boundary and mean computed tomography (CT) attenuation were independent risk factors for malignant peripheral pulmonary lesions (P < 0.05). A histopathological model using a MIL fusion strategy showed strong diagnostic performance for lung cancer, with area under the curve (AUC) values of 0.792 (95% CI 0.680-0.903) in the training cohort and 0.777 (95% CI 0.531-1.000) in the test cohort. Combining predictive clinical features with pathological characteristics enhanced diagnostic yield for peripheral pulmonary lesions to 0.848 (95% CI 0.6945-1.0000). In patients with initially negative LungPro biopsy results, the model identified 20 of 28 malignant lesions (sensitivity: 71.43%) and 15 of 22 benign lesions (specificity: 68.18%). Class activation mapping (CAM) validated the model by highlighting key malignant features, including conspicuous nucleoli and nuclear atypia.</p><p><strong>Conclusions: </strong>The fusion diagnostic model that incorporates clinical and pathomic features markedly enhances the diagnostic accuracy of LungPro in this retrospective cohort. This model aids in the detection of subtle malignant characteristics, thereby offering evidence to support precise and targeted therapeutic interventions for lesions that LungPro classifies as negative in clinical settings.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"24 1","pages":"107"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12465258/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-025-01440-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To construct a pathomics-based machine learning model to enhance the diagnostic efficacy of LungPro navigational bronchoscopy for peripheral pulmonary lesions and to optimize the management strategy for LungPro-diagnosed negative lesions.

Methods: Clinical data and hematoxylin and eosin (H&E)-stained whole slide images (WSIs) were collected from 144 consecutive patients undergoing LungPro virtual bronchoscopy at a single institution between January 2022 and December 2023. Patients were stratified into diagnosis-positive and diagnosis-negative cohorts based on histopathological or etiological confirmation. An artificial intelligence (AI) model was developed and validated using 94 diagnosis-positive cases. Logistic regression (LR) identified associations between clinical/imaging characteristics and malignant pulmonary lesion risk factors. We implemented a convolutional neural network (CNN) with weakly supervised learning to extract image-level features, followed by multiple instance learning (MIL) for patient-level feature aggregation. Multiple machine learning (ML) algorithms were applied to model the extracted features. A multimodal diagnostic framework integrating clinical, imaging, and pathomics data were subsequently developed and evaluated on 50 LungPro-negative patients to assess the framework's diagnostic performance and predictive validity.

Results: Univariable and multivariable logistic regression analyses identified that age, lesion boundary and mean computed tomography (CT) attenuation were independent risk factors for malignant peripheral pulmonary lesions (P < 0.05). A histopathological model using a MIL fusion strategy showed strong diagnostic performance for lung cancer, with area under the curve (AUC) values of 0.792 (95% CI 0.680-0.903) in the training cohort and 0.777 (95% CI 0.531-1.000) in the test cohort. Combining predictive clinical features with pathological characteristics enhanced diagnostic yield for peripheral pulmonary lesions to 0.848 (95% CI 0.6945-1.0000). In patients with initially negative LungPro biopsy results, the model identified 20 of 28 malignant lesions (sensitivity: 71.43%) and 15 of 22 benign lesions (specificity: 68.18%). Class activation mapping (CAM) validated the model by highlighting key malignant features, including conspicuous nucleoli and nuclear atypia.

Conclusions: The fusion diagnostic model that incorporates clinical and pathomic features markedly enhances the diagnostic accuracy of LungPro in this retrospective cohort. This model aids in the detection of subtle malignant characteristics, thereby offering evidence to support precise and targeted therapeutic interventions for lesions that LungPro classifies as negative in clinical settings.

基于病理学的机器学习模型优化LungPro导航支气管镜周围肺病变诊断:一项回顾性研究。
目的:构建基于病理学的机器学习模型,提高LungPro导航支气管镜对周围性肺病变的诊断效果,优化LungPro诊断阴性病变的处理策略。方法:收集2022年1月至2023年12月在同一家机构连续接受LungPro虚拟支气管镜检查的144例患者的临床资料和苏木精和伊红(H&E)染色的全切片图像(WSIs)。根据组织病理学或病因学证实,将患者分为诊断阳性和诊断阴性两组。开发了人工智能(AI)模型并使用94例诊断阳性病例进行了验证。Logistic回归(LR)确定了临床/影像学特征与恶性肺病变危险因素之间的关联。我们实现了一个带有弱监督学习的卷积神经网络(CNN)来提取图像级特征,然后使用多实例学习(MIL)来进行患者级特征聚合。采用多种机器学习算法对提取的特征进行建模。随后开发了一个整合临床、影像学和病理数据的多模式诊断框架,并对50例lungpro阴性患者进行了评估,以评估该框架的诊断性能和预测有效性。结果:单变量和多变量logistic回归分析发现,年龄、病变边界和CT平均衰减是恶性周围性肺病变的独立危险因素(P)。结论:结合临床和病理特征的融合诊断模型在回顾性队列中显著提高了LungPro的诊断准确性。该模型有助于检测细微的恶性特征,从而提供证据,支持对临床环境中LungPro归类为阴性的病变进行精确和有针对性的治疗干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BioMedical Engineering OnLine
BioMedical Engineering OnLine 工程技术-工程:生物医学
CiteScore
6.70
自引率
2.60%
发文量
79
审稿时长
1 months
期刊介绍: BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering. BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to: Bioinformatics- Bioinstrumentation- Biomechanics- Biomedical Devices & Instrumentation- Biomedical Signal Processing- Healthcare Information Systems- Human Dynamics- Neural Engineering- Rehabilitation Engineering- Biomaterials- Biomedical Imaging & Image Processing- BioMEMS and On-Chip Devices- Bio-Micro/Nano Technologies- Biomolecular Engineering- Biosensors- Cardiovascular Systems Engineering- Cellular Engineering- Clinical Engineering- Computational Biology- Drug Delivery Technologies- Modeling Methodologies- Nanomaterials and Nanotechnology in Biomedicine- Respiratory Systems Engineering- Robotics in Medicine- Systems and Synthetic Biology- Systems Biology- Telemedicine/Smartphone Applications in Medicine- Therapeutic Systems, Devices and Technologies- Tissue Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信