Chu-Kuang Chou, Kun-Hua Lee, Riya Karmakar, Arvind Mukundan, Pratham Chandraskhar Gade, Devansh Gupta, Chang-Chao Su, Tsung-Hsien Chen, Chou-Yuan Ko, Hsiang-Chen Wang
{"title":"Emulating Hyperspectral and Narrow-Band Imaging for Deep-Learning-Driven Gastrointestinal Disorder Detection in Wireless Capsule Endoscopy.","authors":"Chu-Kuang Chou, Kun-Hua Lee, Riya Karmakar, Arvind Mukundan, Pratham Chandraskhar Gade, Devansh Gupta, Chang-Chao Su, Tsung-Hsien Chen, Chou-Yuan Ko, Hsiang-Chen Wang","doi":"10.3390/bioengineering12090953","DOIUrl":null,"url":null,"abstract":"<p><p>Diagnosing gastrointestinal disorders (GIDs) remains a significant challenge, particularly when relying on wireless capsule endoscopy (WCE), which lacks advanced imaging enhancements like Narrow Band Imaging (NBI). To address this, we propose a novel framework, the Spectrum-Aided Vision Enhancer (SAVE), especially designed to transform standard white light (WLI) endoscopic images into spectrally enriched representations that emulate both hyperspectral imaging (HSI) and NBI formats. By leveraging color calibration through the Macbeth Color Checker, gamma correction, CIE 1931 XYZ transformation, and principal component analysis (PCA), SAVE reconstructs detailed spectral information from conventional RGB inputs. Performance was evaluated using the Kvasir-v2 dataset, which includes 6490 annotated images spanning eight GI-related categories. Deep learning models like Inception-Net V3, MobileNetV2, MobileNetV3, and AlexNet were trained on both original WLI- and SAVE-enhanced images. Among these, MobileNetV2 achieved an F1-score of 96% for polyp classification using SAVE, and AlexNet saw a notable increase in average accuracy to 84% when applied to enhanced images. Image quality assessment showed high structural similarity (SSIM scores of 93.99% for Olympus endoscopy and 90.68% for WCE), confirming the fidelity of the spectral transformations. Overall, the SAVE framework offers a practical, software-based enhancement strategy that significantly improves diagnostic accuracy in GI imaging, with strong implications for low-cost, non-invasive diagnostics using capsule endoscopy systems.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467974/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090953","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Diagnosing gastrointestinal disorders (GIDs) remains a significant challenge, particularly when relying on wireless capsule endoscopy (WCE), which lacks advanced imaging enhancements like Narrow Band Imaging (NBI). To address this, we propose a novel framework, the Spectrum-Aided Vision Enhancer (SAVE), especially designed to transform standard white light (WLI) endoscopic images into spectrally enriched representations that emulate both hyperspectral imaging (HSI) and NBI formats. By leveraging color calibration through the Macbeth Color Checker, gamma correction, CIE 1931 XYZ transformation, and principal component analysis (PCA), SAVE reconstructs detailed spectral information from conventional RGB inputs. Performance was evaluated using the Kvasir-v2 dataset, which includes 6490 annotated images spanning eight GI-related categories. Deep learning models like Inception-Net V3, MobileNetV2, MobileNetV3, and AlexNet were trained on both original WLI- and SAVE-enhanced images. Among these, MobileNetV2 achieved an F1-score of 96% for polyp classification using SAVE, and AlexNet saw a notable increase in average accuracy to 84% when applied to enhanced images. Image quality assessment showed high structural similarity (SSIM scores of 93.99% for Olympus endoscopy and 90.68% for WCE), confirming the fidelity of the spectral transformations. Overall, the SAVE framework offers a practical, software-based enhancement strategy that significantly improves diagnostic accuracy in GI imaging, with strong implications for low-cost, non-invasive diagnostics using capsule endoscopy systems.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering