Weakly Supervised Gland Segmentation Based on Hierarchical Attention Fusion and Pixel Affinity Learning.

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Yanli Liu, Mengchen Lin, Xiaoqian Sang, Guidong Bao, Yunfeng Wu
{"title":"Weakly Supervised Gland Segmentation Based on Hierarchical Attention Fusion and Pixel Affinity Learning.","authors":"Yanli Liu, Mengchen Lin, Xiaoqian Sang, Guidong Bao, Yunfeng Wu","doi":"10.3390/bioengineering12090992","DOIUrl":null,"url":null,"abstract":"<p><p>Precise segmentation of glands in histopathological images is essential for the diagnosis of colorectal cancer, as the changes in gland morphology are associated with pathological progression. Conventional computer-assisted methods rely on dense pixel-level annotations, which are costly and labor-intensive to obtain. The present study proposes a two-stage weakly supervised segmentation framework named Multi-Level Attention and Affinity (MAA). The MAA framework utilizes the image-level labels and combines the Multi-Level Attention Fusion (MAF) and Affinity Refinement (AR) modules. The MAF module extracts the hierarchical features from multiple transformer layers to grasp global semantic context, and generates more comprehensive initial class activation maps. By modeling inter-pixel semantic consistency, the AR module refines pseudo-labels, which can sharpen the boundary delineation and reduce label noise. The experiments on the GlaS dataset showed that the proposed MAA framework achieves the Intersection over Union (IoU) of 81.99% and Dice coefficient of 90.10%, which outperformed the state-of-the-art Online Easy Example Mining (OEEM) method with an improvement of 4.43% in IoU. Such experimental results demonstrated the effectiveness of integrating hierarchical attention mechanisms with affinity-guided refinement for annotation-efficient and robust gland segmentation.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467702/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090992","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Precise segmentation of glands in histopathological images is essential for the diagnosis of colorectal cancer, as the changes in gland morphology are associated with pathological progression. Conventional computer-assisted methods rely on dense pixel-level annotations, which are costly and labor-intensive to obtain. The present study proposes a two-stage weakly supervised segmentation framework named Multi-Level Attention and Affinity (MAA). The MAA framework utilizes the image-level labels and combines the Multi-Level Attention Fusion (MAF) and Affinity Refinement (AR) modules. The MAF module extracts the hierarchical features from multiple transformer layers to grasp global semantic context, and generates more comprehensive initial class activation maps. By modeling inter-pixel semantic consistency, the AR module refines pseudo-labels, which can sharpen the boundary delineation and reduce label noise. The experiments on the GlaS dataset showed that the proposed MAA framework achieves the Intersection over Union (IoU) of 81.99% and Dice coefficient of 90.10%, which outperformed the state-of-the-art Online Easy Example Mining (OEEM) method with an improvement of 4.43% in IoU. Such experimental results demonstrated the effectiveness of integrating hierarchical attention mechanisms with affinity-guided refinement for annotation-efficient and robust gland segmentation.

基于分层注意融合和像素亲和学习的弱监督腺体分割。
组织病理学图像中腺体的精确分割对于结直肠癌的诊断至关重要,因为腺体形态的变化与病理进展有关。传统的计算机辅助方法依赖于密集的像素级注释,这是昂贵和劳动密集型的。本研究提出了一个两阶段弱监督分割框架,称为多层次注意和亲和力(MAA)。MAA框架利用图像级标签,结合多层次注意力融合(MAF)和亲和细化(AR)模块。MAF模块从多个转换层中提取分层特征,掌握全局语义上下文,生成更全面的初始类激活图。增强现实模块通过对像素间语义一致性建模,对伪标签进行细化,从而锐化边界划分,降低标签噪声。在GlaS数据集上的实验表明,所提出的MAA框架实现了81.99%的交联(Intersection over Union, IoU)和90.10%的Dice系数,优于当前最先进的在线简单示例挖掘(Online Easy Example Mining, OEEM)方法,IoU提高了4.43%。这些实验结果证明了将层次注意机制与亲和力引导的细化相结合的有效性,可以实现高效的注释和鲁棒的腺体分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信