{"title":"Evaluation of Operator Variability and Validation of an AI-Assisted α-Angle Measurement System for DDH Using a Phantom Model.","authors":"Yusuke Ohashi, Tomohiro Shimizu, Hidenori Koyano, Yumejiro Nakamura, Daisuke Takahashi, Katsuhisa Yamada, Norimasa Iwasaki","doi":"10.3390/bioengineering12091004","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasound examination using the Graf method is widely applied for early detection of developmental dysplasia of the hip (DDH), but intra- and inter-operator variability remains a limitation. This study aimed to quantify operator variability in hip ultrasound assessments and to validate an AI-assisted system for automated α-angle measurement to improve reproducibility. Thirty participants of different experience levels, including trained clinicians, residents, and medical students, each performed six ultrasound scans on a standardized infant hip phantom. Examination time, iliac margin inclination, and α-angle measurements were analyzed to assess intra- and inter-operator variability. In parallel, an AI-based system was developed to automatically detect anatomical landmarks and calculate α-angles from static images and dynamic video sequences. Validation was conducted using the phantom model with a known α-angle of 70°. Clinicians achieved shorter examination times and higher reproducibility than residents and students, with manual measurements systematically underestimating the reference α-angle. Static AI produced closer estimates with greater variability, whereas dynamic AI achieved the highest accuracy (mean 69.2°) and consistency with narrower limits of agreement than manual measurements. These findings confirm substantial operator variability and demonstrate that AI-assisted dynamic ultrasound analysis can improve reproducibility and reliability in routine DDH screening.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467695/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12091004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasound examination using the Graf method is widely applied for early detection of developmental dysplasia of the hip (DDH), but intra- and inter-operator variability remains a limitation. This study aimed to quantify operator variability in hip ultrasound assessments and to validate an AI-assisted system for automated α-angle measurement to improve reproducibility. Thirty participants of different experience levels, including trained clinicians, residents, and medical students, each performed six ultrasound scans on a standardized infant hip phantom. Examination time, iliac margin inclination, and α-angle measurements were analyzed to assess intra- and inter-operator variability. In parallel, an AI-based system was developed to automatically detect anatomical landmarks and calculate α-angles from static images and dynamic video sequences. Validation was conducted using the phantom model with a known α-angle of 70°. Clinicians achieved shorter examination times and higher reproducibility than residents and students, with manual measurements systematically underestimating the reference α-angle. Static AI produced closer estimates with greater variability, whereas dynamic AI achieved the highest accuracy (mean 69.2°) and consistency with narrower limits of agreement than manual measurements. These findings confirm substantial operator variability and demonstrate that AI-assisted dynamic ultrasound analysis can improve reproducibility and reliability in routine DDH screening.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering