Yaling Guo, Xiaobin Yang, Lifeng Tang, Tao Liang, Rongshen Xiao, Qiang Liu
{"title":"Validation of Madecassoside Synergy Significantly Enhanced Cryptotanshinone's Therapeutic Efficacy Against Acne Vulgaris.","authors":"Yaling Guo, Xiaobin Yang, Lifeng Tang, Tao Liang, Rongshen Xiao, Qiang Liu","doi":"10.3390/bioengineering12090935","DOIUrl":null,"url":null,"abstract":"<p><p>Current acne therapies face major limitations, including antibiotic resistance and skin irritancy. In this study, a synergistic strategy combining cryptotanshinone and madecassoside was developed through functional complementarity. Antibacterial activity against <i>Cutibacterium acnes</i> was evaluated using minimum inhibitory concentration (MIC) and inhibition zone assays, while cytotoxicity was assessed using human keratinocytes (HaCaTs). Anti-inflammatory efficacy was quantified by measuring tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) in lipopolysaccharide-stimulated macrophages and a copper sulfate (CuSO<sub>4</sub>)-induced zebrafish inflammatory model. Systemic safety was examined in zebrafish models (developmental toxicity and sodium dodecyl sulfate-induced irritation). Finally, macroscopic severity, histopathology, and serum cytokines were used to assess an oleic acid-induced rat acne model. Cryptotanshinone inhibited <i>Cutibacterium acnes</i> (minimum inhibitory concentration = 62.5 μg/mL) but exhibited cytotoxicity (>5 μg/mL) and irritancy (≥1000 μg/mL). Madecassoside eliminated cryptotanshinone-induced cytotoxicity and reduced irritation. Importantly, the combination maintained antibacterial efficacy while synergistically enhancing anti-inflammatory effects, achieving a 94% reduction in follicular hyperkeratosis compared with 39% for cryptotanshinone alone (<i>p</i> < 0.01), alongside normalization of histopathology and cytokine levels. In conclusion, madecassoside functionally complements cryptotanshinone by neutralizing its cytotoxicity and irritancy, enabling a safe, synergistic therapy that concurrently targets antibacterial and anti-inflammatory pathways in acne pathogenesis.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467506/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090935","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Current acne therapies face major limitations, including antibiotic resistance and skin irritancy. In this study, a synergistic strategy combining cryptotanshinone and madecassoside was developed through functional complementarity. Antibacterial activity against Cutibacterium acnes was evaluated using minimum inhibitory concentration (MIC) and inhibition zone assays, while cytotoxicity was assessed using human keratinocytes (HaCaTs). Anti-inflammatory efficacy was quantified by measuring tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and prostaglandin E2 (PGE2) in lipopolysaccharide-stimulated macrophages and a copper sulfate (CuSO4)-induced zebrafish inflammatory model. Systemic safety was examined in zebrafish models (developmental toxicity and sodium dodecyl sulfate-induced irritation). Finally, macroscopic severity, histopathology, and serum cytokines were used to assess an oleic acid-induced rat acne model. Cryptotanshinone inhibited Cutibacterium acnes (minimum inhibitory concentration = 62.5 μg/mL) but exhibited cytotoxicity (>5 μg/mL) and irritancy (≥1000 μg/mL). Madecassoside eliminated cryptotanshinone-induced cytotoxicity and reduced irritation. Importantly, the combination maintained antibacterial efficacy while synergistically enhancing anti-inflammatory effects, achieving a 94% reduction in follicular hyperkeratosis compared with 39% for cryptotanshinone alone (p < 0.01), alongside normalization of histopathology and cytokine levels. In conclusion, madecassoside functionally complements cryptotanshinone by neutralizing its cytotoxicity and irritancy, enabling a safe, synergistic therapy that concurrently targets antibacterial and anti-inflammatory pathways in acne pathogenesis.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering