{"title":"Cross-Instrument Data Utilization Based on Laser-Induced Breakdown Spectroscopy (LIBS) for the Identification of <i>Akebia</i> Species.","authors":"Yuge Liu, Qianqian Wang, Tianzhong Luo, Zhifang Zhao, Leifu Wang, Shuai Xu, Hao Zhou, Jiquan Zhao, Zixiao Zhou, Geer Teng","doi":"10.3390/bioengineering12090964","DOIUrl":null,"url":null,"abstract":"<p><p>New technologies and equipment for medicine analysis and diagnostics have always been critical in clinical medication and pharmaceutical production. Especially in the field of traditional Chinese medicine (TCM) where the chemical composition is not fully clear, cross-device analysis and identification using the same technology can sometimes even lead to misjudgments. Akebia species, capable of inducing heat clearing, diuresis, and anti-inflammatory effects, show great potential in clinical applications. However, the three commonly used species differ in pharmacological effects and therefore should not be used interchangeably. We proposed a method combining LIBS with random forest for species identification and established a modeling and verification scheme across device platforms. Spectra of three Akebia species were collected using two LIBS systems equipped with spectrometers of different resolutions. The data acquired from the low-resolution spectrometer were used for model training, while the data from the high-resolution spectrometers were used for testing. A spectral correction and feature selection (SCFS) method was proposed, in which spectral data were first corrected using a standard lamp, followed by feature selection via analysis of variance (ANOVA) to determine the optimal number of discriminative features. The highest classification accuracy of 80.61% was achieved when 28 features were used. Finally, a post-processing (PP) strategy was applied, where abnormal spectra in the test set were removed using density-based spatial clustering of applications with noise (DBSCAN), resulting in a final classification accuracy of 85.50%. These results demonstrate that the proposed \"SCFS-PP\" framework effectively enhances the reliability of cross-instrument data utilization and expands the applicability of LIBS in the field of TCM.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467881/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090964","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
New technologies and equipment for medicine analysis and diagnostics have always been critical in clinical medication and pharmaceutical production. Especially in the field of traditional Chinese medicine (TCM) where the chemical composition is not fully clear, cross-device analysis and identification using the same technology can sometimes even lead to misjudgments. Akebia species, capable of inducing heat clearing, diuresis, and anti-inflammatory effects, show great potential in clinical applications. However, the three commonly used species differ in pharmacological effects and therefore should not be used interchangeably. We proposed a method combining LIBS with random forest for species identification and established a modeling and verification scheme across device platforms. Spectra of three Akebia species were collected using two LIBS systems equipped with spectrometers of different resolutions. The data acquired from the low-resolution spectrometer were used for model training, while the data from the high-resolution spectrometers were used for testing. A spectral correction and feature selection (SCFS) method was proposed, in which spectral data were first corrected using a standard lamp, followed by feature selection via analysis of variance (ANOVA) to determine the optimal number of discriminative features. The highest classification accuracy of 80.61% was achieved when 28 features were used. Finally, a post-processing (PP) strategy was applied, where abnormal spectra in the test set were removed using density-based spatial clustering of applications with noise (DBSCAN), resulting in a final classification accuracy of 85.50%. These results demonstrate that the proposed "SCFS-PP" framework effectively enhances the reliability of cross-instrument data utilization and expands the applicability of LIBS in the field of TCM.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering