The Therapeutic Scope of Orofacial Mesenchymal Stem Cells.

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Bharath Chandra Vaddaram, Akhilesh Kumar Shakya, Brandon R Zadeh, Diariza M Lopez, Jon Wagner, Todd Parco, Umadevi Kandalam
{"title":"The Therapeutic Scope of Orofacial Mesenchymal Stem Cells.","authors":"Bharath Chandra Vaddaram, Akhilesh Kumar Shakya, Brandon R Zadeh, Diariza M Lopez, Jon Wagner, Todd Parco, Umadevi Kandalam","doi":"10.3390/bioengineering12090970","DOIUrl":null,"url":null,"abstract":"<p><p>Orofacial Mesenchymal Stem Cells (OMSCs) are an attractive and promising tool for tissue regeneration, with their potential for craniofacial bone repair being a primary focus of research. A key advantage driving their clinical interest is their accessibility from tissues that are often discarded, such as exfoliated deciduous teeth, which circumvents the ethical concerns and donor site morbidity associated with other stem cell sources. The high proliferation ability and multi-differentiation capacity of OMSCs make them a unique resource for tissue engineering. Recently, OMSCs have been explored in the restoration of the heart and skin, treatment of oral mucosal lesions, and regeneration of hard connective tissues such as cartilage. Beyond their direct regenerative capabilities, OMSCs possess potent immunomodulatory functions, enabling them to regulate the immune system in various inflammatory disorders through the secretion of cytokines. This review offers an in-depth update regarding the therapeutic possibilities of OMSCs, highlighting their roles in the regeneration of bone and various tissues, outlining their immunomodulatory capabilities, and examining the essential technologies necessary for their clinical application.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467435/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090970","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Orofacial Mesenchymal Stem Cells (OMSCs) are an attractive and promising tool for tissue regeneration, with their potential for craniofacial bone repair being a primary focus of research. A key advantage driving their clinical interest is their accessibility from tissues that are often discarded, such as exfoliated deciduous teeth, which circumvents the ethical concerns and donor site morbidity associated with other stem cell sources. The high proliferation ability and multi-differentiation capacity of OMSCs make them a unique resource for tissue engineering. Recently, OMSCs have been explored in the restoration of the heart and skin, treatment of oral mucosal lesions, and regeneration of hard connective tissues such as cartilage. Beyond their direct regenerative capabilities, OMSCs possess potent immunomodulatory functions, enabling them to regulate the immune system in various inflammatory disorders through the secretion of cytokines. This review offers an in-depth update regarding the therapeutic possibilities of OMSCs, highlighting their roles in the regeneration of bone and various tissues, outlining their immunomodulatory capabilities, and examining the essential technologies necessary for their clinical application.

口面间充质干细胞的治疗范围。
Orofacial Mesenchymal Stem Cells (OMSCs)是一种极具吸引力和前景的组织再生工具,其在颅面骨修复方面的潜力是研究的主要焦点。推动其临床研究的一个关键优势是,它们可以从经常被丢弃的组织中获得,例如脱落的乳牙,这规避了与其他干细胞来源相关的伦理问题和供体部位发病率。OMSCs的高增殖能力和多向分化能力使其成为组织工程中独特的资源。近年来,OMSCs在心脏和皮肤的修复、口腔黏膜病变的治疗以及软骨等硬结缔组织的再生等方面得到了探索。除了其直接的再生能力,OMSCs还具有强大的免疫调节功能,使其能够通过分泌细胞因子来调节各种炎症疾病中的免疫系统。这篇综述提供了关于OMSCs治疗可能性的深入更新,强调了它们在骨和各种组织再生中的作用,概述了它们的免疫调节能力,并研究了它们临床应用所需的基本技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信