The ASC Module: A GPU Memory-Efficient, Physiology-Aware Approach for Improving Segmentation Accuracy on Poorly Contrast-Enhanced CT Scans-A Preliminary Study.

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Zuoyuan Zhao, Toru Higaki, Yanlei Gu, Bisser Raytchev
{"title":"The ASC Module: A GPU Memory-Efficient, Physiology-Aware Approach for Improving Segmentation Accuracy on Poorly Contrast-Enhanced CT Scans-A Preliminary Study.","authors":"Zuoyuan Zhao, Toru Higaki, Yanlei Gu, Bisser Raytchev","doi":"10.3390/bioengineering12090974","DOIUrl":null,"url":null,"abstract":"<p><p>At present, some aging populations, such as those in Japan, face an underlying risk of inadequate medical resources. Using neural networks to assist doctors in locating the aorta in patients via computed tomography (CT) before surgery is a task with practical value. While UNet and some of its derived models are efficient for the semantic segmentation of optimally contrast-enhanced CT images, their segmentation accuracy on poorly or non-contrasted CT images is too low to provide usable results. To solve this problem, we propose a data-processing module based on the physical-spatial structure and anatomical properties of the aorta, which we call the Automatic Spatial Contrast Module. In an experiment using UNet, Attention UNet, TransUNet, and Swin-UNet as baselines, modified versions of these models using the proposed Automatic Spatial Contrast (ASC) Module showed improvements of up to 24.84% in the Intersection-over-Union (IoU) and 28.13% in the Dice Similarity Coefficient (DSC). Furthermore, the proposed approach entails only a small increase in GPU memory when compared with the baseline models.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467327/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090974","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

At present, some aging populations, such as those in Japan, face an underlying risk of inadequate medical resources. Using neural networks to assist doctors in locating the aorta in patients via computed tomography (CT) before surgery is a task with practical value. While UNet and some of its derived models are efficient for the semantic segmentation of optimally contrast-enhanced CT images, their segmentation accuracy on poorly or non-contrasted CT images is too low to provide usable results. To solve this problem, we propose a data-processing module based on the physical-spatial structure and anatomical properties of the aorta, which we call the Automatic Spatial Contrast Module. In an experiment using UNet, Attention UNet, TransUNet, and Swin-UNet as baselines, modified versions of these models using the proposed Automatic Spatial Contrast (ASC) Module showed improvements of up to 24.84% in the Intersection-over-Union (IoU) and 28.13% in the Dice Similarity Coefficient (DSC). Furthermore, the proposed approach entails only a small increase in GPU memory when compared with the baseline models.

ASC模块:一种提高低对比度增强CT扫描分割精度的GPU内存效率、生理感知方法——初步研究。
目前,一些老龄化人口,如日本,面临着医疗资源不足的潜在风险。利用神经网络辅助医生在手术前通过计算机断层扫描(CT)定位患者的主动脉是一项具有实用价值的任务。虽然UNet及其衍生的一些模型对于最佳对比度增强的CT图像的语义分割是有效的,但它们在对比度较差或无对比度的CT图像上的分割精度太低,无法提供可用的结果。为了解决这个问题,我们提出了一个基于主动脉物理空间结构和解剖特性的数据处理模块,我们称之为自动空间对比模块。在以UNet、Attention UNet、TransUNet和swun -UNet为基准的实验中,使用所提出的自动空间对比(ASC)模块对这些模型的改进版本在Intersection-over-Union (IoU)和Dice Similarity Coefficient (DSC)上分别提高了24.84%和28.13%。此外,与基线模型相比,所提出的方法只需要GPU内存的少量增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信