Dementia and Heart Failure Classification Using Optimized Weighted Objective Distance and Blood Biomarker-Based Features.

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Veerasak Noonpan, Supansa Chaising, Georgi Hristov, Punnarumol Temdee
{"title":"Dementia and Heart Failure Classification Using Optimized Weighted Objective Distance and Blood Biomarker-Based Features.","authors":"Veerasak Noonpan, Supansa Chaising, Georgi Hristov, Punnarumol Temdee","doi":"10.3390/bioengineering12090980","DOIUrl":null,"url":null,"abstract":"<p><p>Dementia and heart failure are growing global health issues, exacerbated by aging populations and disparities in care access. Diagnosing these conditions often requires advanced equipment or tests with limited availability. A reliable tool distinguishing between the two conditions is essential, enabling more accurate diagnoses and reducing misclassifications and inappropriate referrals. This study proposes a novel measurement, the optimized weighted objective distance (OWOD), a modified version of the weighted objective distance, for the classification of dementia and heart failure. The OWOD is designed to enhance model generalization through a data-driven approach. By enhancing objective class generalization, applying multi-feature distance normalization, and identifying the most significant features for classification-together with newly integrated blood biomarker features-the OWOD could strengthen the classification of dementia and heart failure. A combination of risk factors and proposed blood biomarkers (derived from 10,000 electronic health records at Chiang Rai Prachanukroh Hospital, Chiang Rai, Thailand), comprising 20 features, demonstrated the best OWOD classification performance. For model evaluation, the proposed OWOD-based classification method attained an accuracy of 95.45%, a precision of 96.14%, a recall of 94.70%, an F1-score of 95.42%, and an area under the receiver operating characteristic curve of 97.10%, surpassing the results obtained using other machine learning-based classification models (gradient boosting, decision tree, neural network, and support vector machine).</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467529/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090980","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dementia and heart failure are growing global health issues, exacerbated by aging populations and disparities in care access. Diagnosing these conditions often requires advanced equipment or tests with limited availability. A reliable tool distinguishing between the two conditions is essential, enabling more accurate diagnoses and reducing misclassifications and inappropriate referrals. This study proposes a novel measurement, the optimized weighted objective distance (OWOD), a modified version of the weighted objective distance, for the classification of dementia and heart failure. The OWOD is designed to enhance model generalization through a data-driven approach. By enhancing objective class generalization, applying multi-feature distance normalization, and identifying the most significant features for classification-together with newly integrated blood biomarker features-the OWOD could strengthen the classification of dementia and heart failure. A combination of risk factors and proposed blood biomarkers (derived from 10,000 electronic health records at Chiang Rai Prachanukroh Hospital, Chiang Rai, Thailand), comprising 20 features, demonstrated the best OWOD classification performance. For model evaluation, the proposed OWOD-based classification method attained an accuracy of 95.45%, a precision of 96.14%, a recall of 94.70%, an F1-score of 95.42%, and an area under the receiver operating characteristic curve of 97.10%, surpassing the results obtained using other machine learning-based classification models (gradient boosting, decision tree, neural network, and support vector machine).

使用优化加权目标距离和基于血液生物标志物特征的痴呆和心力衰竭分类。
痴呆症和心力衰竭是日益严重的全球健康问题,人口老龄化和获得医疗服务的差距加剧了这一问题。诊断这些疾病通常需要先进的设备或可用性有限的测试。一个可靠的工具区分这两种情况是必不可少的,使更准确的诊断和减少错误分类和不适当的转诊。本研究提出了一种新的测量方法,优化加权目标距离(OWOD),一种改进的加权目标距离,用于痴呆和心力衰竭的分类。OWOD旨在通过数据驱动的方法增强模型泛化。通过增强客观分类泛化,应用多特征距离归一化,识别最显著的特征进行分类,以及新整合的血液生物标志物特征,OWOD可以加强痴呆和心力衰竭的分类。风险因素和拟议的血液生物标志物(来自泰国清莱Prachanukroh医院的10,000份电子健康记录)的组合,包括20个特征,显示了最佳的OWOD分类性能。在模型评价方面,本文提出的基于owod的分类方法准确率为95.45%,精密度为96.14%,召回率为94.70%,f1得分为95.42%,接收者工作特征曲线下面积为97.10%,优于其他基于机器学习的分类模型(梯度增强、决策树、神经网络和支持向量机)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信