The Effects of Rehabilitation Programs Incorporating Breathing Interventions on Chronic Neck Pain Among Patients with Forward Head Posture: A Systematic Review and Meta-Analysis.
{"title":"The Effects of Rehabilitation Programs Incorporating Breathing Interventions on Chronic Neck Pain Among Patients with Forward Head Posture: A Systematic Review and Meta-Analysis.","authors":"Seri Park, Kihyun Kim, Minbong Kang","doi":"10.3390/bioengineering12090947","DOIUrl":null,"url":null,"abstract":"<p><p>The effectiveness of breathing interventions on postural alignment, pain reduction, and functional improvement in patients with forward head posture (FHP) and chronic neck pain remains uncertain. Previously conducted randomized controlled trials (RCTs) that involved breathing interventions were identified through searches of the PubMed, Cochrane Library, Web of Science, and Scopus databases. Studies were included if they applied diaphragmatic breathing, breathing muscle training, or feedback breathing exercises for at least 2 weeks to chronic neck pain (duration ≥ 3 months) and/or forward head posture. The craniovertebral angle (CVA), the visual analog scale (VAS), and the neck disability index (NDI) were the primary outcome measures. The results showed that breathing interventions had a moderate effect size in terms of improving the CVA. Limited effects were observed for pain reduction, and improvements in neck disability approached statistical significance. However, despite these positive findings, the overall evidence was rated as 'very low certainty' in the GRADE assessment, primarily due to high heterogeneity among studies, limited sample sizes, and the potential for unit-of-analysis errors in diagnosis-based subgroup analyses. Consequently, their overall effectiveness in chronic neck pain was limited. Future research is needed to explore a multidisciplinary approach to neck pain using standardized protocols and larger samples.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467365/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090947","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The effectiveness of breathing interventions on postural alignment, pain reduction, and functional improvement in patients with forward head posture (FHP) and chronic neck pain remains uncertain. Previously conducted randomized controlled trials (RCTs) that involved breathing interventions were identified through searches of the PubMed, Cochrane Library, Web of Science, and Scopus databases. Studies were included if they applied diaphragmatic breathing, breathing muscle training, or feedback breathing exercises for at least 2 weeks to chronic neck pain (duration ≥ 3 months) and/or forward head posture. The craniovertebral angle (CVA), the visual analog scale (VAS), and the neck disability index (NDI) were the primary outcome measures. The results showed that breathing interventions had a moderate effect size in terms of improving the CVA. Limited effects were observed for pain reduction, and improvements in neck disability approached statistical significance. However, despite these positive findings, the overall evidence was rated as 'very low certainty' in the GRADE assessment, primarily due to high heterogeneity among studies, limited sample sizes, and the potential for unit-of-analysis errors in diagnosis-based subgroup analyses. Consequently, their overall effectiveness in chronic neck pain was limited. Future research is needed to explore a multidisciplinary approach to neck pain using standardized protocols and larger samples.
呼吸干预对前倾头位(FHP)和慢性颈部疼痛患者体位调整、疼痛减轻和功能改善的有效性仍不确定。通过检索PubMed、Cochrane图书馆、Web of Science和Scopus数据库,确定了先前进行的涉及呼吸干预的随机对照试验(rct)。如果对慢性颈部疼痛(持续时间≥3个月)和/或头部前倾进行膈肌呼吸、呼吸肌训练或反馈呼吸练习至少2周,则纳入研究。颅脑角(CVA)、视觉模拟评分(VAS)和颈部残疾指数(NDI)是主要观察指标。结果显示,呼吸干预在改善CVA方面具有中等效应。在减轻疼痛方面观察到的效果有限,颈部残疾的改善接近统计学意义。然而,尽管有这些积极的发现,总体证据在GRADE评估中被评为“非常低的确定性”,主要是由于研究之间的高度异质性,样本量有限,以及基于诊断的亚组分析中存在分析单元错误的可能性。因此,他们在慢性颈部疼痛的整体效果是有限的。未来的研究需要探索一种多学科的方法,使用标准化的协议和更大的样本来治疗颈部疼痛。
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering