Alireza Vafaei Sadr, Manvita Mareboina, Diana Orabueze, Nandini Sarkar, Seyyed Sina Hejazian, Ajith Vemuri, Ravi Shah, Ankit Maheshwari, Ramin Zand, Vida Abedi
{"title":"Integration of EHR and ECG Data for Predicting Paroxysmal Atrial Fibrillation in Stroke Patients.","authors":"Alireza Vafaei Sadr, Manvita Mareboina, Diana Orabueze, Nandini Sarkar, Seyyed Sina Hejazian, Ajith Vemuri, Ravi Shah, Ankit Maheshwari, Ramin Zand, Vida Abedi","doi":"10.3390/bioengineering12090961","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting paroxysmal atrial fibrillation (PAF) is challenging due to its transient nature. Existing methods often rely solely on electrocardiogram (ECG) waveforms or Electronic Health Record (EHR)-based clinical risk factors. We hypothesized that explicitly balancing the contributions of these heterogeneous data sources could improve prediction accuracy. We developed a Transformer-based deep learning model that integrates 12-lead ECG signals and 47 structured EHR variables from 189 patients with cryptogenic stroke, including 49 with PAF. By systematically varying the relative contributions of ECG and EHR data, we identified an optimal ratio for prediction. Best performance (accuracy: 0.70, sensitivity: 0.72, specificity: 0.87, Area Under Curve - Receiver Operating Characteristics (AUROC): 0.65, Area Under the Precision-Recall Curve (AUPRC): 0.43) was achieved using a 5-fold cross-validation when EHR data contributed one-third and ECG data two-thirds of the model's input. This multimodal approach outperformed unimodal models, improving accuracy by 35% over EHR-only and 5% over ECG-only methods. Our results support the value of combining ECG and structured EHR information to improve accuracy and sensitivity in this pilot cohort, motivating validation in larger studies.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467541/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090961","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting paroxysmal atrial fibrillation (PAF) is challenging due to its transient nature. Existing methods often rely solely on electrocardiogram (ECG) waveforms or Electronic Health Record (EHR)-based clinical risk factors. We hypothesized that explicitly balancing the contributions of these heterogeneous data sources could improve prediction accuracy. We developed a Transformer-based deep learning model that integrates 12-lead ECG signals and 47 structured EHR variables from 189 patients with cryptogenic stroke, including 49 with PAF. By systematically varying the relative contributions of ECG and EHR data, we identified an optimal ratio for prediction. Best performance (accuracy: 0.70, sensitivity: 0.72, specificity: 0.87, Area Under Curve - Receiver Operating Characteristics (AUROC): 0.65, Area Under the Precision-Recall Curve (AUPRC): 0.43) was achieved using a 5-fold cross-validation when EHR data contributed one-third and ECG data two-thirds of the model's input. This multimodal approach outperformed unimodal models, improving accuracy by 35% over EHR-only and 5% over ECG-only methods. Our results support the value of combining ECG and structured EHR information to improve accuracy and sensitivity in this pilot cohort, motivating validation in larger studies.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering