MS-LTCAF: A Multi-Scale Lead-Temporal Co-Attention Framework for ECG Arrhythmia Detection.

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Na Feng, Chengwei Chen, Peng Du, Chengrong Gong, Jianming Pei, Dong Huang
{"title":"MS-LTCAF: A Multi-Scale Lead-Temporal Co-Attention Framework for ECG Arrhythmia Detection.","authors":"Na Feng, Chengwei Chen, Peng Du, Chengrong Gong, Jianming Pei, Dong Huang","doi":"10.3390/bioengineering12091007","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases are the leading cause of death worldwide, with arrhythmia being a prevalent and potentially fatal condition. The multi-lead electrocardiogram (ECG) is the primary tool for detecting arrhythmias. However, existing detection methods have shortcomings: they cannot dynamically integrate inter-lead correlations with multi-scale temporal changes in cardiac electrical activity. They also lack mechanisms to simultaneously focus on key leads and time segments, and thus fail to address multi-lead redundancy or capture comprehensive spatial-temporal relationships. To solve these problems, we propose a Multi-Scale Lead-Temporal Co-Attention Framework (MS-LTCAF). Our framework incorporates two key components: a Lead-Temporal Co-Attention Residual (LTCAR) module that dynamically weights the importance of leads and time segments, and a multi-scale branch structure that integrates features of cardiac electrical activity across different time periods. Together, these components enable the framework to automatically extract and integrate features within a single lead, between different leads, and across multiple time scales from ECG signals. Experimental results demonstrate that MS-LTCAF outperforms existing methods. On the PTB-XL dataset, it achieves an AUC of 0.927, approximately 1% higher than the current optimal baseline model (DNN_zhu's 0.918). On the LUDB dataset, it ranks first in terms of AUC (0.942), accuracy (0.920), and F1-score (0.745). Furthermore, the framework can focus on key leads and time segments through the co-attention mechanism, while the multi-scale branches help capture both the details of local waveforms (such as QRS complexes) and the overall rhythm patterns (such as RR intervals).</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467215/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12091007","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases are the leading cause of death worldwide, with arrhythmia being a prevalent and potentially fatal condition. The multi-lead electrocardiogram (ECG) is the primary tool for detecting arrhythmias. However, existing detection methods have shortcomings: they cannot dynamically integrate inter-lead correlations with multi-scale temporal changes in cardiac electrical activity. They also lack mechanisms to simultaneously focus on key leads and time segments, and thus fail to address multi-lead redundancy or capture comprehensive spatial-temporal relationships. To solve these problems, we propose a Multi-Scale Lead-Temporal Co-Attention Framework (MS-LTCAF). Our framework incorporates two key components: a Lead-Temporal Co-Attention Residual (LTCAR) module that dynamically weights the importance of leads and time segments, and a multi-scale branch structure that integrates features of cardiac electrical activity across different time periods. Together, these components enable the framework to automatically extract and integrate features within a single lead, between different leads, and across multiple time scales from ECG signals. Experimental results demonstrate that MS-LTCAF outperforms existing methods. On the PTB-XL dataset, it achieves an AUC of 0.927, approximately 1% higher than the current optimal baseline model (DNN_zhu's 0.918). On the LUDB dataset, it ranks first in terms of AUC (0.942), accuracy (0.920), and F1-score (0.745). Furthermore, the framework can focus on key leads and time segments through the co-attention mechanism, while the multi-scale branches help capture both the details of local waveforms (such as QRS complexes) and the overall rhythm patterns (such as RR intervals).

MS-LTCAF:用于心电心律失常检测的多尺度导联-时间协同注意框架。
心血管疾病是世界范围内导致死亡的主要原因,心律失常是一种普遍且可能致命的疾病。多导联心电图(ECG)是检测心律失常的主要工具。然而,现有的检测方法有缺点:它们不能动态地整合导联间相关性与心脏电活动的多尺度时间变化。它们也缺乏同时关注关键线索和时间段的机制,因此无法解决多线索冗余或捕捉全面的时空关系。为了解决这些问题,我们提出了一个多尺度前导-时间共注意框架(MS-LTCAF)。我们的框架包含两个关键组件:一个导联-时间共注意残差(LTCAR)模块,动态加权导联和时间段的重要性,以及一个多尺度分支结构,集成了不同时间段的心电活动特征。总之,这些组件使框架能够在单个引线内、不同引线之间以及跨多个时间尺度从ECG信号中自动提取和集成特征。实验结果表明,MS-LTCAF优于现有的方法。在pdb - xl数据集上,它的AUC为0.927,比当前最优基线模型(DNN_zhu的0.918)高出约1%。在LUDB数据集上,它在AUC(0.942)、准确率(0.920)和F1-score(0.745)方面排名第一。此外,该框架可以通过共同注意机制关注关键导联和时间片段,而多尺度分支有助于捕获局部波形(如QRS复合物)和整体节奏模式(如RR间隔)的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信