{"title":"From Anatomy to Genomics Using a Multi-Task Deep Learning Approach for Comprehensive Glioma Profiling.","authors":"Akmalbek Abdusalomov, Sabina Umirzakova, Obidjon Bekmirzaev, Adilbek Dauletov, Abror Buriboev, Alpamis Kutlimuratov, Akhram Nishanov, Rashid Nasimov, Ryumduck Oh","doi":"10.3390/bioengineering12090979","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gliomas are among the most complex and lethal primary brain tumors, necessitating precise evaluation of both anatomical subregions and molecular alterations for effective clinical management.</p><p><strong>Methods: </strong>To find a solution to the disconnected nature of current bioimage analysis pipelines, where anatomical segmentation based on MRI and molecular biomarker prediction are done as separate tasks, we use here Molecular-Genomic and Multi-Task (MGMT-Net), a one deep learning scheme that carries out the task of the multi-modal MRI data without any conversion. MGMT-Net incorporates a novel Cross-Modality Attention Fusion (CMAF) module that dynamically integrates diverse imaging sequences and pairs them with a hybrid Transformer-Convolutional Neural Network (CNN) encoder to capture both global context and local anatomical detail. This architecture supports dual-task decoders, enabling concurrent voxel-wise tumor delineation and subject-level classification of key genomic markers, including the IDH gene mutation, the 1p/19q co-deletion, and the TERT gene promoter mutation.</p><p><strong>Results: </strong>Extensive validation on the Brain Tumor Segmentation (BraTS 2024) dataset and the combined Cancer Genome Atlas/Erasmus Glioma Database (TCGA/EGD) datasets demonstrated high segmentation accuracy and robust biomarker classification performance, with strong generalizability across external institutional cohorts. Ablation studies further confirmed the importance of each architectural component in achieving overall robustness.</p><p><strong>Conclusions: </strong>MGMT-Net presents a scalable and clinically relevant solution that bridges radiological imaging and genomic insights, potentially reducing diagnostic latency and enhancing precision in neuro-oncology decision-making. By integrating spatial and genetic analysis within a single model, this work represents a significant step toward comprehensive, AI-driven glioma assessment.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467930/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090979","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Gliomas are among the most complex and lethal primary brain tumors, necessitating precise evaluation of both anatomical subregions and molecular alterations for effective clinical management.
Methods: To find a solution to the disconnected nature of current bioimage analysis pipelines, where anatomical segmentation based on MRI and molecular biomarker prediction are done as separate tasks, we use here Molecular-Genomic and Multi-Task (MGMT-Net), a one deep learning scheme that carries out the task of the multi-modal MRI data without any conversion. MGMT-Net incorporates a novel Cross-Modality Attention Fusion (CMAF) module that dynamically integrates diverse imaging sequences and pairs them with a hybrid Transformer-Convolutional Neural Network (CNN) encoder to capture both global context and local anatomical detail. This architecture supports dual-task decoders, enabling concurrent voxel-wise tumor delineation and subject-level classification of key genomic markers, including the IDH gene mutation, the 1p/19q co-deletion, and the TERT gene promoter mutation.
Results: Extensive validation on the Brain Tumor Segmentation (BraTS 2024) dataset and the combined Cancer Genome Atlas/Erasmus Glioma Database (TCGA/EGD) datasets demonstrated high segmentation accuracy and robust biomarker classification performance, with strong generalizability across external institutional cohorts. Ablation studies further confirmed the importance of each architectural component in achieving overall robustness.
Conclusions: MGMT-Net presents a scalable and clinically relevant solution that bridges radiological imaging and genomic insights, potentially reducing diagnostic latency and enhancing precision in neuro-oncology decision-making. By integrating spatial and genetic analysis within a single model, this work represents a significant step toward comprehensive, AI-driven glioma assessment.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering