Machine and Deep Learning on Radiomic Features from Contrast-Enhanced Mammography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Breast Cancer Characterization.
Roberta Fusco, Vincenza Granata, Teresa Petrosino, Paolo Vallone, Maria Assunta Daniela Iasevoli, Mauro Mattace Raso, Sergio Venanzio Setola, Davide Pupo, Gerardo Ferrara, Annarita Fanizzi, Raffaella Massafra, Miria Lafranceschina, Daniele La Forgia, Laura Greco, Francesca Romana Ferranti, Valeria De Soccio, Antonello Vidiri, Francesca Botta, Valeria Dominelli, Enrico Cassano, Charlotte Marguerite Lucille Trombadori, Paolo Belli, Giovanna Trecate, Chiara Tenconi, Maria Carmen De Santis, Luca Boldrini, Antonella Petrillo
{"title":"Machine and Deep Learning on Radiomic Features from Contrast-Enhanced Mammography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Breast Cancer Characterization.","authors":"Roberta Fusco, Vincenza Granata, Teresa Petrosino, Paolo Vallone, Maria Assunta Daniela Iasevoli, Mauro Mattace Raso, Sergio Venanzio Setola, Davide Pupo, Gerardo Ferrara, Annarita Fanizzi, Raffaella Massafra, Miria Lafranceschina, Daniele La Forgia, Laura Greco, Francesca Romana Ferranti, Valeria De Soccio, Antonello Vidiri, Francesca Botta, Valeria Dominelli, Enrico Cassano, Charlotte Marguerite Lucille Trombadori, Paolo Belli, Giovanna Trecate, Chiara Tenconi, Maria Carmen De Santis, Luca Boldrini, Antonella Petrillo","doi":"10.3390/bioengineering12090952","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to evaluate the accuracy of machine and deep learning approaches on radiomics features obtained by Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) and contrast enhanced mammography (CEM) in the characterization of breast cancer and in the prediction of the tumor molecular profile.</p><p><strong>Methods: </strong>A total of 153 patients with malignant and benign lesions were analyzed and underwent MRI examinations. Considering the histological findings as the ground truth, three different types of findings were used in the analysis: (1) benign versus malignant lesions; (2) G1 + G2 vs. G3 classification; (3) the presence of human epidermal growth factor receptor 2 (HER2+ vs. HER2-). Radiomic features (n = 851) were extracted from manually segmented regions of interest using the PyRadiomics platform, following IBSI-compliant protocols. Highly correlated features were excluded, and the remaining features were standardized using z-score normalization. A feature selection process based on Elastic Net regularization (α = 0.5) was used to reduce dimensionality. Synthetic balancing of the training data was applied using the ROSE method to address class imbalance. Model performance was evaluated using repeated 10-fold cross-validation and AUC-based metrics.</p><p><strong>Results: </strong>Among the 153 patients enrolled in the studies, 113 were malignant lesions. Among the 113 malignant lesions, 32 had high grading (G3) and 66 had the HER2+ receptor. Radiomic features derived from both CEM and DCE-MRI showed strong discriminative performance for malignancy detection, with several features achieving AUCs above 0.80. Gradient Boosting Machine (GBM) achieved the highest accuracy (0.911) and AUC (0.907) in differentiating benign from malignant lesions. For tumor grading, the neural network model attained the best accuracy (0.848), while LASSO yielded the highest sensitivity (0.667) for detecting high-grade tumors. In predicting HER2+ status, the neural network also performed best (AUC = 0.669), with a sensitivity of 0.842.</p><p><strong>Conclusions: </strong>Radiomics-based machine learning models applied to multiparametric CEM and DCE-MRI images offer promising, non-invasive tools for breast cancer characterization. The models effectively distinguished benign from malignant lesions and showed potential in predicting histological grade and HER2 status. These results demonstrate that radiomic features extracted from CEM and DCE-MRI, when analyzed through machine and deep learning models, can support accurate breast cancer characterization. Such models may assist clinicians in early diagnosis, histological grading, and biomarker assessment, potentially enhancing personalized treatment planning and non-invasive decision-making in routine practice.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090952","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The aim of this study was to evaluate the accuracy of machine and deep learning approaches on radiomics features obtained by Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) and contrast enhanced mammography (CEM) in the characterization of breast cancer and in the prediction of the tumor molecular profile.
Methods: A total of 153 patients with malignant and benign lesions were analyzed and underwent MRI examinations. Considering the histological findings as the ground truth, three different types of findings were used in the analysis: (1) benign versus malignant lesions; (2) G1 + G2 vs. G3 classification; (3) the presence of human epidermal growth factor receptor 2 (HER2+ vs. HER2-). Radiomic features (n = 851) were extracted from manually segmented regions of interest using the PyRadiomics platform, following IBSI-compliant protocols. Highly correlated features were excluded, and the remaining features were standardized using z-score normalization. A feature selection process based on Elastic Net regularization (α = 0.5) was used to reduce dimensionality. Synthetic balancing of the training data was applied using the ROSE method to address class imbalance. Model performance was evaluated using repeated 10-fold cross-validation and AUC-based metrics.
Results: Among the 153 patients enrolled in the studies, 113 were malignant lesions. Among the 113 malignant lesions, 32 had high grading (G3) and 66 had the HER2+ receptor. Radiomic features derived from both CEM and DCE-MRI showed strong discriminative performance for malignancy detection, with several features achieving AUCs above 0.80. Gradient Boosting Machine (GBM) achieved the highest accuracy (0.911) and AUC (0.907) in differentiating benign from malignant lesions. For tumor grading, the neural network model attained the best accuracy (0.848), while LASSO yielded the highest sensitivity (0.667) for detecting high-grade tumors. In predicting HER2+ status, the neural network also performed best (AUC = 0.669), with a sensitivity of 0.842.
Conclusions: Radiomics-based machine learning models applied to multiparametric CEM and DCE-MRI images offer promising, non-invasive tools for breast cancer characterization. The models effectively distinguished benign from malignant lesions and showed potential in predicting histological grade and HER2 status. These results demonstrate that radiomic features extracted from CEM and DCE-MRI, when analyzed through machine and deep learning models, can support accurate breast cancer characterization. Such models may assist clinicians in early diagnosis, histological grading, and biomarker assessment, potentially enhancing personalized treatment planning and non-invasive decision-making in routine practice.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering