Machine and Deep Learning on Radiomic Features from Contrast-Enhanced Mammography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Breast Cancer Characterization.

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Roberta Fusco, Vincenza Granata, Teresa Petrosino, Paolo Vallone, Maria Assunta Daniela Iasevoli, Mauro Mattace Raso, Sergio Venanzio Setola, Davide Pupo, Gerardo Ferrara, Annarita Fanizzi, Raffaella Massafra, Miria Lafranceschina, Daniele La Forgia, Laura Greco, Francesca Romana Ferranti, Valeria De Soccio, Antonello Vidiri, Francesca Botta, Valeria Dominelli, Enrico Cassano, Charlotte Marguerite Lucille Trombadori, Paolo Belli, Giovanna Trecate, Chiara Tenconi, Maria Carmen De Santis, Luca Boldrini, Antonella Petrillo
{"title":"Machine and Deep Learning on Radiomic Features from Contrast-Enhanced Mammography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Breast Cancer Characterization.","authors":"Roberta Fusco, Vincenza Granata, Teresa Petrosino, Paolo Vallone, Maria Assunta Daniela Iasevoli, Mauro Mattace Raso, Sergio Venanzio Setola, Davide Pupo, Gerardo Ferrara, Annarita Fanizzi, Raffaella Massafra, Miria Lafranceschina, Daniele La Forgia, Laura Greco, Francesca Romana Ferranti, Valeria De Soccio, Antonello Vidiri, Francesca Botta, Valeria Dominelli, Enrico Cassano, Charlotte Marguerite Lucille Trombadori, Paolo Belli, Giovanna Trecate, Chiara Tenconi, Maria Carmen De Santis, Luca Boldrini, Antonella Petrillo","doi":"10.3390/bioengineering12090952","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to evaluate the accuracy of machine and deep learning approaches on radiomics features obtained by Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) and contrast enhanced mammography (CEM) in the characterization of breast cancer and in the prediction of the tumor molecular profile.</p><p><strong>Methods: </strong>A total of 153 patients with malignant and benign lesions were analyzed and underwent MRI examinations. Considering the histological findings as the ground truth, three different types of findings were used in the analysis: (1) benign versus malignant lesions; (2) G1 + G2 vs. G3 classification; (3) the presence of human epidermal growth factor receptor 2 (HER2+ vs. HER2-). Radiomic features (n = 851) were extracted from manually segmented regions of interest using the PyRadiomics platform, following IBSI-compliant protocols. Highly correlated features were excluded, and the remaining features were standardized using z-score normalization. A feature selection process based on Elastic Net regularization (α = 0.5) was used to reduce dimensionality. Synthetic balancing of the training data was applied using the ROSE method to address class imbalance. Model performance was evaluated using repeated 10-fold cross-validation and AUC-based metrics.</p><p><strong>Results: </strong>Among the 153 patients enrolled in the studies, 113 were malignant lesions. Among the 113 malignant lesions, 32 had high grading (G3) and 66 had the HER2+ receptor. Radiomic features derived from both CEM and DCE-MRI showed strong discriminative performance for malignancy detection, with several features achieving AUCs above 0.80. Gradient Boosting Machine (GBM) achieved the highest accuracy (0.911) and AUC (0.907) in differentiating benign from malignant lesions. For tumor grading, the neural network model attained the best accuracy (0.848), while LASSO yielded the highest sensitivity (0.667) for detecting high-grade tumors. In predicting HER2+ status, the neural network also performed best (AUC = 0.669), with a sensitivity of 0.842.</p><p><strong>Conclusions: </strong>Radiomics-based machine learning models applied to multiparametric CEM and DCE-MRI images offer promising, non-invasive tools for breast cancer characterization. The models effectively distinguished benign from malignant lesions and showed potential in predicting histological grade and HER2 status. These results demonstrate that radiomic features extracted from CEM and DCE-MRI, when analyzed through machine and deep learning models, can support accurate breast cancer characterization. Such models may assist clinicians in early diagnosis, histological grading, and biomarker assessment, potentially enhancing personalized treatment planning and non-invasive decision-making in routine practice.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467694/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090952","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The aim of this study was to evaluate the accuracy of machine and deep learning approaches on radiomics features obtained by Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) and contrast enhanced mammography (CEM) in the characterization of breast cancer and in the prediction of the tumor molecular profile.

Methods: A total of 153 patients with malignant and benign lesions were analyzed and underwent MRI examinations. Considering the histological findings as the ground truth, three different types of findings were used in the analysis: (1) benign versus malignant lesions; (2) G1 + G2 vs. G3 classification; (3) the presence of human epidermal growth factor receptor 2 (HER2+ vs. HER2-). Radiomic features (n = 851) were extracted from manually segmented regions of interest using the PyRadiomics platform, following IBSI-compliant protocols. Highly correlated features were excluded, and the remaining features were standardized using z-score normalization. A feature selection process based on Elastic Net regularization (α = 0.5) was used to reduce dimensionality. Synthetic balancing of the training data was applied using the ROSE method to address class imbalance. Model performance was evaluated using repeated 10-fold cross-validation and AUC-based metrics.

Results: Among the 153 patients enrolled in the studies, 113 were malignant lesions. Among the 113 malignant lesions, 32 had high grading (G3) and 66 had the HER2+ receptor. Radiomic features derived from both CEM and DCE-MRI showed strong discriminative performance for malignancy detection, with several features achieving AUCs above 0.80. Gradient Boosting Machine (GBM) achieved the highest accuracy (0.911) and AUC (0.907) in differentiating benign from malignant lesions. For tumor grading, the neural network model attained the best accuracy (0.848), while LASSO yielded the highest sensitivity (0.667) for detecting high-grade tumors. In predicting HER2+ status, the neural network also performed best (AUC = 0.669), with a sensitivity of 0.842.

Conclusions: Radiomics-based machine learning models applied to multiparametric CEM and DCE-MRI images offer promising, non-invasive tools for breast cancer characterization. The models effectively distinguished benign from malignant lesions and showed potential in predicting histological grade and HER2 status. These results demonstrate that radiomic features extracted from CEM and DCE-MRI, when analyzed through machine and deep learning models, can support accurate breast cancer characterization. Such models may assist clinicians in early diagnosis, histological grading, and biomarker assessment, potentially enhancing personalized treatment planning and non-invasive decision-making in routine practice.

对比增强乳房x线照相术和动态对比增强磁共振成像用于乳腺癌表征的放射学特征的机器和深度学习。
目的:本研究的目的是评估机器和深度学习方法对动态对比增强磁共振成像(DCE-MRI)和对比增强乳房x线摄影(CEM)获得的放射组学特征在乳腺癌表征和肿瘤分子谱预测中的准确性。方法:对153例恶性和良性病变患者进行分析,并行MRI检查。考虑到组织学结果作为基本事实,在分析中使用了三种不同类型的结果:(1)良性病变与恶性病变;(2) G1 + G2 vs. G3分类;(3)人表皮生长因子受体2 (HER2+ vs. HER2-)的存在。使用PyRadiomics平台,遵循ibsi兼容协议,从人工分割的感兴趣区域提取放射组特征(n = 851)。排除高度相关的特征,其余特征使用z-score归一化进行标准化。采用基于弹性网正则化(α = 0.5)的特征选择过程进行降维。采用ROSE方法对训练数据进行综合平衡,解决类不平衡问题。使用重复的10倍交叉验证和基于auc的指标评估模型性能。结果:153例纳入研究的患者中,113例为恶性病变。113例恶性病变中,高分级(G3) 32例,HER2+受体66例。来自CEM和DCE-MRI的放射学特征对恶性肿瘤检测显示出很强的鉴别性能,其中一些特征的auc达到0.80以上。梯度增强机(Gradient Boosting Machine, GBM)鉴别良恶性病变的准确率(0.911)和AUC(0.907)最高。对于肿瘤分级,神经网络模型获得了最好的准确率(0.848),而LASSO在检测高级别肿瘤时获得了最高的灵敏度(0.667)。在预测HER2+状态时,神经网络也表现最佳(AUC = 0.669),灵敏度为0.842。结论:基于放射组学的机器学习模型应用于多参数CEM和DCE-MRI图像,为乳腺癌表征提供了有前途的非侵入性工具。该模型能有效区分良性和恶性病变,并显示出预测组织学分级和HER2状态的潜力。这些结果表明,从CEM和DCE-MRI中提取的放射学特征,通过机器和深度学习模型进行分析,可以支持准确的乳腺癌表征。这些模型可以帮助临床医生进行早期诊断、组织学分级和生物标志物评估,潜在地增强个性化治疗计划和日常实践中的非侵入性决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信