David Zalazar, Jiayi Feng, Derek A Banyard, Marzieh Aliaghaei, Alan D Widgerow, Jered B Haun
{"title":"Integrated Fluidic Platform for Washing and Mechanical Processing of Lipoaspirate for Downstream Fat Grafting and Regenerative Applications.","authors":"David Zalazar, Jiayi Feng, Derek A Banyard, Marzieh Aliaghaei, Alan D Widgerow, Jered B Haun","doi":"10.3390/bioengineering12090918","DOIUrl":null,"url":null,"abstract":"<p><p>Autologous fat grafting of human lipoaspirate (LA) is increasingly used in reconstructive and cosmetic surgery for lipofilling and stem cell-rich \"nanofat\" reinjection for regenerative medicine. While commercial devices (e.g., REVOLVE and Puregraft) are available, many surgeons use non-standardized manual washing techniques, leading to inconsistent graft retention (20-80%). Moreover, no system can unite washing directly with mechanical processing to produce a nanofat-like product directly from raw LA. We developed a novel preparation device (PD) that is designed for peristaltic pump-driven washing of LA and can be seamlessly combined with our previously developed Emulsification and Micronization Device (EMD) into an automated closed-loop platform. Human LA samples were washed with the PD and compared to standard manual washing via visual colorimetric analysis. We then evaluated the mechanical processing of PD-washed LA using our EMD and assessed cell count, viability, and stromal vascular fraction-derived subpopulations (i.e., mesenchymal stem cells, endothelial progenitor cells (EPCs), pericytes, transit-amplifying (TA) progenitor cells, and supra-adventitial adipose stromal cells). Recirculating LA through the PD for at least one minute resulted in sufficient mixing, producing LA with equivalent color and quality to manual washing. Integrating the EMD within a platform enabled both washing and mechanical processing under peristaltic flow, enriching key subpopulations compared to manual methods. Thus, our fluidic platform effectively washes LA in a closed-loop system, minimizing LA tissue manipulation and opportunity for contamination while also simplifying the workflow for mechanical processing. Further refinement and automation of this platform would enhance the reproducibility and quality of small-volume fat grafts, cell-assisted lipotransfer, and stem/progenitor cell injections to promote wound healing and angiogenesis.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467523/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090918","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Autologous fat grafting of human lipoaspirate (LA) is increasingly used in reconstructive and cosmetic surgery for lipofilling and stem cell-rich "nanofat" reinjection for regenerative medicine. While commercial devices (e.g., REVOLVE and Puregraft) are available, many surgeons use non-standardized manual washing techniques, leading to inconsistent graft retention (20-80%). Moreover, no system can unite washing directly with mechanical processing to produce a nanofat-like product directly from raw LA. We developed a novel preparation device (PD) that is designed for peristaltic pump-driven washing of LA and can be seamlessly combined with our previously developed Emulsification and Micronization Device (EMD) into an automated closed-loop platform. Human LA samples were washed with the PD and compared to standard manual washing via visual colorimetric analysis. We then evaluated the mechanical processing of PD-washed LA using our EMD and assessed cell count, viability, and stromal vascular fraction-derived subpopulations (i.e., mesenchymal stem cells, endothelial progenitor cells (EPCs), pericytes, transit-amplifying (TA) progenitor cells, and supra-adventitial adipose stromal cells). Recirculating LA through the PD for at least one minute resulted in sufficient mixing, producing LA with equivalent color and quality to manual washing. Integrating the EMD within a platform enabled both washing and mechanical processing under peristaltic flow, enriching key subpopulations compared to manual methods. Thus, our fluidic platform effectively washes LA in a closed-loop system, minimizing LA tissue manipulation and opportunity for contamination while also simplifying the workflow for mechanical processing. Further refinement and automation of this platform would enhance the reproducibility and quality of small-volume fat grafts, cell-assisted lipotransfer, and stem/progenitor cell injections to promote wound healing and angiogenesis.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering