Analysis of Conventional and Enhanced-Biocompatibility ZnO/Ag Heterojunction Nanorod-Based Advanced Root Canal Sealers.

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Gayathri Velusamy, Aleena Unnikrishnan, Dinesh Veeran Ponnuvelu, Selvakumar Rajendran, Sungsu Park, Biji Pullithadathil
{"title":"Analysis of Conventional and Enhanced-Biocompatibility ZnO/Ag Heterojunction Nanorod-Based Advanced Root Canal Sealers.","authors":"Gayathri Velusamy, Aleena Unnikrishnan, Dinesh Veeran Ponnuvelu, Selvakumar Rajendran, Sungsu Park, Biji Pullithadathil","doi":"10.3390/bioengineering12090917","DOIUrl":null,"url":null,"abstract":"<p><p>This investigation aims to evaluate the biocompatibility and assess the cytotoxicity of synthesized ZnO/Ag heterojunction nanorods with commercially available root canal sealers in India. Among the commercially available root canal sealers, zinc oxide (ZnO) eugenol-based sealers are widely utilized as per Grossmann's requirements. However, these ZnO eugenol-based sealers often experience solubility issues and tissue reactions in contact with periapical tissues. To overcome the inexplicable reactivity of ZnO eugenol-based sealers, nano ZnO and nano ZnO/Ag heterojunction materials have been developed via a wet-chemical approach and studied to assess their biocompatibility and cytotoxicity. The findings of our study revealed that nano ZnO/Ag heterojunction material possesses a higher degree of biocompatibility and low cytotoxicity as compared to conventional ZnO eugenol-based sealers, attributed to its high surface-to-volume ratio, the enhanced penetration of nanosized sealers into dentinal tubules, and the synergistic spillover sensitization effect of nano ZnO combined with Ag nanoclusters. From this comparative evaluation of root canal sealers, the usage of nano ZnO/Ag heterojunction materials was found to be significantly advantageous over commercial zinc oxide eugenol-based sealers and may find profound usage with a long shelf-life.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467648/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090917","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This investigation aims to evaluate the biocompatibility and assess the cytotoxicity of synthesized ZnO/Ag heterojunction nanorods with commercially available root canal sealers in India. Among the commercially available root canal sealers, zinc oxide (ZnO) eugenol-based sealers are widely utilized as per Grossmann's requirements. However, these ZnO eugenol-based sealers often experience solubility issues and tissue reactions in contact with periapical tissues. To overcome the inexplicable reactivity of ZnO eugenol-based sealers, nano ZnO and nano ZnO/Ag heterojunction materials have been developed via a wet-chemical approach and studied to assess their biocompatibility and cytotoxicity. The findings of our study revealed that nano ZnO/Ag heterojunction material possesses a higher degree of biocompatibility and low cytotoxicity as compared to conventional ZnO eugenol-based sealers, attributed to its high surface-to-volume ratio, the enhanced penetration of nanosized sealers into dentinal tubules, and the synergistic spillover sensitization effect of nano ZnO combined with Ag nanoclusters. From this comparative evaluation of root canal sealers, the usage of nano ZnO/Ag heterojunction materials was found to be significantly advantageous over commercial zinc oxide eugenol-based sealers and may find profound usage with a long shelf-life.

传统和增强生物相容性的ZnO/Ag异质结纳米棒先进根管密封剂的研究。
本研究旨在评价合成的ZnO/Ag异质结纳米棒与印度市售根管密封器的生物相容性和细胞毒性。在市售的根管密封剂中,氧化锌(ZnO)丁香酚基密封剂根据Grossmann的要求被广泛使用。然而,这些基于氧化锌丁香酚的封口剂在与根尖周围组织接触时经常遇到溶解度问题和组织反应。为了克服ZnO丁香酚基密封剂难以解释的反应性,通过湿化学方法开发了纳米ZnO和纳米ZnO/Ag异质结材料,并研究了它们的生物相容性和细胞毒性。研究结果表明,纳米ZnO/Ag异质结材料由于具有高的表面体积比、纳米密封材料对牙本质小管的渗透能力增强以及纳米ZnO与Ag纳米团簇的协同溢出增敏效应,与传统的ZnO丁香酚基密封材料相比,具有更高的生物相容性和低的细胞毒性。通过对根管密封剂的比较评估,发现纳米ZnO/Ag异质结材料的使用明显优于商用氧化锌丁香酚基密封剂,并且可能具有更长的保质期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信