Impact of Disinfection and Sterilization on 3D-Printing Resin Performance for Surgical Guides in Cardiac Ablation Surgery.

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Rani Kronenberger, Rawan Kazma, Alireza Amirabadi, Leire Viana Uribe, Giacomo Talevi, Görkem Eylül Kaya, Niko Van den Brande, Ramak Hossein Abadi, Kalliopi-Artemi Kalteremidou, Danny Van Hemelrijck, Kitty Baert, Tom Hauffman, Jeroen Soete, Luigi Pannone, Andrea Maria Paparella, Ivan Eltsov, Gian Battista Chierchia, Mark La Meir, Ali Gharaviri, Carlo de Asmundis
{"title":"Impact of Disinfection and Sterilization on 3D-Printing Resin Performance for Surgical Guides in Cardiac Ablation Surgery.","authors":"Rani Kronenberger, Rawan Kazma, Alireza Amirabadi, Leire Viana Uribe, Giacomo Talevi, Görkem Eylül Kaya, Niko Van den Brande, Ramak Hossein Abadi, Kalliopi-Artemi Kalteremidou, Danny Van Hemelrijck, Kitty Baert, Tom Hauffman, Jeroen Soete, Luigi Pannone, Andrea Maria Paparella, Ivan Eltsov, Gian Battista Chierchia, Mark La Meir, Ali Gharaviri, Carlo de Asmundis","doi":"10.3390/bioengineering12090924","DOIUrl":null,"url":null,"abstract":"<p><p>Patient-tailored, 3D-printed surgical guides offer significant potential to improve precision and therapeutic efficacy in cardiac ablation surgery. However, reliable post-sterilization material performance presents a critical yet underexplored barrier to clinical adoption. This study investigates how disinfection and sterilization impact the mechanical and thermal properties of photopolymer resins. Specimens from two 3D-printing resins (Bioflex A80 MB™, 3Dresyns; MED625FLX™, Stratasys) were treated with four combinations of disinfection techniques (low-temperature manual cleaning; high-temperature machine washing) and sterilization techniques (H<sub>2</sub>O<sub>2</sub> vs. autoclaving). We assessed post-sterilization properties by mechanical (material integrity, bending tests), thermal (differential scanning calorimetry, thermogravimetric analysis), and viscoelastic (dynamic mechanical analysis) studies. Statistical analysis was performed using one-way ANOVA with Bonferroni post hoc tests (α = 0.05). From this preliminary study, we conclude that MED625FLX maintains integrity and flexibility across all tested disinfection and sterilization methods. Bioflex A80 MB is only suitable for low-temperature disinfection-sterilization, as high-temperature treatments cause surface cracking. Neither resin is appropriate for cryogenic conditions due to the risk of brittleness. Further research into post-sterilization properties is essential to ensure the safety and clinical reliability of these materials in cardiac procedures.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467745/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090924","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Patient-tailored, 3D-printed surgical guides offer significant potential to improve precision and therapeutic efficacy in cardiac ablation surgery. However, reliable post-sterilization material performance presents a critical yet underexplored barrier to clinical adoption. This study investigates how disinfection and sterilization impact the mechanical and thermal properties of photopolymer resins. Specimens from two 3D-printing resins (Bioflex A80 MB™, 3Dresyns; MED625FLX™, Stratasys) were treated with four combinations of disinfection techniques (low-temperature manual cleaning; high-temperature machine washing) and sterilization techniques (H2O2 vs. autoclaving). We assessed post-sterilization properties by mechanical (material integrity, bending tests), thermal (differential scanning calorimetry, thermogravimetric analysis), and viscoelastic (dynamic mechanical analysis) studies. Statistical analysis was performed using one-way ANOVA with Bonferroni post hoc tests (α = 0.05). From this preliminary study, we conclude that MED625FLX maintains integrity and flexibility across all tested disinfection and sterilization methods. Bioflex A80 MB is only suitable for low-temperature disinfection-sterilization, as high-temperature treatments cause surface cracking. Neither resin is appropriate for cryogenic conditions due to the risk of brittleness. Further research into post-sterilization properties is essential to ensure the safety and clinical reliability of these materials in cardiac procedures.

消毒灭菌对心脏消融手术导板3d打印树脂性能的影响
患者定制,3d打印手术指南提供了显著的潜力,以提高精度和治疗效果的心脏消融手术。然而,可靠的灭菌后材料性能是临床采用的一个关键但尚未充分探索的障碍。本研究探讨了消毒和灭菌如何影响光聚合物树脂的机械和热性能。两种3d打印树脂(Bioflex A80 MB™、3Dresyns、MED625FLX™、Stratasys)的标本采用四种消毒技术(低温人工清洗、高温机洗)和灭菌技术(H2O2 vs.高压灭菌)组合处理。我们通过机械(材料完整性、弯曲测试)、热(差示扫描量热法、热重分析)和粘弹性(动态力学分析)研究评估了灭菌后的性能。统计学分析采用Bonferroni事后检验的单因素方差分析(α = 0.05)。从这项初步研究中,我们得出结论,MED625FLX在所有测试的消毒和灭菌方法中保持完整性和灵活性。Bioflex A80 MB仅适用于低温消毒灭菌,高温处理会导致表面开裂。由于脆性的风险,这两种树脂都不适合低温条件。进一步研究灭菌后的性能对于确保这些材料在心脏手术中的安全性和临床可靠性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信