Zicheng Deng, Ali Al Siraj, Isabella Lowry, Ellen Ruan, Rohan Patel, Wen Gao, Tanya V Kalin, Vladimir V Kalinichenko
{"title":"Nanoparticle-Based Delivery Systems for Synergistic Therapy in Lung Cancers.","authors":"Zicheng Deng, Ali Al Siraj, Isabella Lowry, Ellen Ruan, Rohan Patel, Wen Gao, Tanya V Kalin, Vladimir V Kalinichenko","doi":"10.3390/bioengineering12090968","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer remains the leading cause of cancer-related mortality worldwide, with conventional treatments often limited by systemic toxicity, different tumor sensitivity to the drugs, and the emergence of multidrug resistance. To address these challenges, nanoparticle-based delivery systems have emerged as an innovative strategy, enabling the simultaneous transport of multiple agents, including chemotherapeutic drugs and expression vectors, to enhance treatment efficacy and overcome tumor resistance. This review explores various nanocarrier platforms, such as liposomes, solid lipid nanoparticles, polymeric micelles, and inorganic nanoparticles, specifically designed for lung cancer therapy. Synergistic effects and physicochemical properties of therapeutic agents must be carefully considered in the design of nanoparticle-based co-delivery systems for lung cancer therapy. We highlight the applications of these nanoparticle systems in drug-drug, gene-gene, and drug-gene co-delivery approaches. By addressing the limitations of traditional therapies, nanoparticle-based systems offer a promising avenue to improve outcomes in patients with lung cancers.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467453/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090968","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lung cancer remains the leading cause of cancer-related mortality worldwide, with conventional treatments often limited by systemic toxicity, different tumor sensitivity to the drugs, and the emergence of multidrug resistance. To address these challenges, nanoparticle-based delivery systems have emerged as an innovative strategy, enabling the simultaneous transport of multiple agents, including chemotherapeutic drugs and expression vectors, to enhance treatment efficacy and overcome tumor resistance. This review explores various nanocarrier platforms, such as liposomes, solid lipid nanoparticles, polymeric micelles, and inorganic nanoparticles, specifically designed for lung cancer therapy. Synergistic effects and physicochemical properties of therapeutic agents must be carefully considered in the design of nanoparticle-based co-delivery systems for lung cancer therapy. We highlight the applications of these nanoparticle systems in drug-drug, gene-gene, and drug-gene co-delivery approaches. By addressing the limitations of traditional therapies, nanoparticle-based systems offer a promising avenue to improve outcomes in patients with lung cancers.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering