{"title":"Intelligence Architectures and Machine Learning Applications in Contemporary Spine Care.","authors":"Rahul Kumar, Conor Dougherty, Kyle Sporn, Akshay Khanna, Puja Ravi, Pranay Prabhakar, Nasif Zaman","doi":"10.3390/bioengineering12090967","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid evolution of artificial intelligence (AI) and machine learning (ML) technologies has initiated a paradigm shift in contemporary spine care. This narrative review synthesizes advances across imaging-based diagnostics, surgical planning, genomic risk stratification, and post-operative outcome prediction. We critically assess high-performing AI tools, such as convolutional neural networks for vertebral fracture detection, robotic guidance platforms like Mazor X and ExcelsiusGPS, and deep learning-based morphometric analysis systems. In parallel, we examine the emergence of ambient clinical intelligence and precision pharmacogenomics as enablers of personalized spine care. Notably, genome-wide association studies (GWAS) and polygenic risk scores are enabling a shift from reactive to predictive management models in spine surgery. We also highlight multi-omics platforms and federated learning frameworks that support integrative, privacy-preserving analytics at scale. Despite these advances, challenges remain-including algorithmic opacity, regulatory fragmentation, data heterogeneity, and limited generalizability across populations and clinical settings. Through a multidimensional lens, this review outlines not only current capabilities but also future directions to ensure safe, equitable, and high-fidelity AI deployment in spine care delivery.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466956/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090967","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid evolution of artificial intelligence (AI) and machine learning (ML) technologies has initiated a paradigm shift in contemporary spine care. This narrative review synthesizes advances across imaging-based diagnostics, surgical planning, genomic risk stratification, and post-operative outcome prediction. We critically assess high-performing AI tools, such as convolutional neural networks for vertebral fracture detection, robotic guidance platforms like Mazor X and ExcelsiusGPS, and deep learning-based morphometric analysis systems. In parallel, we examine the emergence of ambient clinical intelligence and precision pharmacogenomics as enablers of personalized spine care. Notably, genome-wide association studies (GWAS) and polygenic risk scores are enabling a shift from reactive to predictive management models in spine surgery. We also highlight multi-omics platforms and federated learning frameworks that support integrative, privacy-preserving analytics at scale. Despite these advances, challenges remain-including algorithmic opacity, regulatory fragmentation, data heterogeneity, and limited generalizability across populations and clinical settings. Through a multidimensional lens, this review outlines not only current capabilities but also future directions to ensure safe, equitable, and high-fidelity AI deployment in spine care delivery.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering