Tao-Yuan Liu, Kun-Hua Lee, Arvind Mukundan, Riya Karmakar, Hardik Dhiman, Hsiang-Chen Wang
{"title":"AI in Dentistry: Innovations, Ethical Considerations, and Integration Barriers.","authors":"Tao-Yuan Liu, Kun-Hua Lee, Arvind Mukundan, Riya Karmakar, Hardik Dhiman, Hsiang-Chen Wang","doi":"10.3390/bioengineering12090928","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/objectives: </strong>Artificial Intelligence (AI) is improving dentistry through increased accuracy in diagnostics, planning, and workflow automation. AI tools, including machine learning (ML) and deep learning (DL), are being adopted in oral medicine to improve patient care, efficiency, and lessen clinicians' workloads. AI in dentistry, despite its use, faces an issue of acceptance, with its obstacles including ethical, legal, and technological ones. In this article, a review of current AI use in oral medicine, new technology development, and integration barriers is discussed.</p><p><strong>Methods: </strong>A narrative review of peer-reviewed articles in databases such as PubMed, Scopus, Web of Science, and Google Scholar was conducted. Peer-reviewed articles over the last decade, such as AI application in diagnostic imaging, predictive analysis, real-time documentation, and workflows automation, were examined. Besides, improvements in AI models and critical impediments such as ethical concerns and integration barriers were addressed in the review.</p><p><strong>Results: </strong>AI has exhibited strong performance in radiographic diagnostics, with high accuracy in reading cone-beam computed tomography (CBCT) scan, intraoral photographs, and radiographs. AI-facilitated predictive analysis has enhanced personalized care planning and disease avoidance, and AI-facilitated automation of workflows has maximized administrative workflows and patient record management. U-Net-based segmentation models exhibit sensitivities and specificities of approximately 93.0% and 88.0%, respectively, in identifying periapical lesions on 2D CBCT slices. TensorFlow-based workflow modules, integrated into vendor platforms such as Planmeca Romexis, can reduce the processing time of patient records by a minimum of 30 percent in standard practice. The privacy-preserving federated learning architecture has attained cross-site model consistency exceeding 90% accuracy, enabling collaborative training among diverse dentistry clinics. Explainable AI (XAI) and federated learning have enhanced AI transparency and security with technological advancement, but barriers include concerns regarding data privacy, AI bias, gaps in AI regulating, and training clinicians.</p><p><strong>Conclusions: </strong>AI is revolutionizing dentistry with enhanced diagnostic accuracy, predictive planning, and efficient administration automation. With technology developing AI software even smarter, ethics and legislation have to follow in order to allow responsible AI integration. To make AI in dental care work at its best, future research will have to prioritize AI interpretability, developing uniform protocols, and collaboration between specialties in order to allow AI's full potential in dentistry.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467570/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090928","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/objectives: Artificial Intelligence (AI) is improving dentistry through increased accuracy in diagnostics, planning, and workflow automation. AI tools, including machine learning (ML) and deep learning (DL), are being adopted in oral medicine to improve patient care, efficiency, and lessen clinicians' workloads. AI in dentistry, despite its use, faces an issue of acceptance, with its obstacles including ethical, legal, and technological ones. In this article, a review of current AI use in oral medicine, new technology development, and integration barriers is discussed.
Methods: A narrative review of peer-reviewed articles in databases such as PubMed, Scopus, Web of Science, and Google Scholar was conducted. Peer-reviewed articles over the last decade, such as AI application in diagnostic imaging, predictive analysis, real-time documentation, and workflows automation, were examined. Besides, improvements in AI models and critical impediments such as ethical concerns and integration barriers were addressed in the review.
Results: AI has exhibited strong performance in radiographic diagnostics, with high accuracy in reading cone-beam computed tomography (CBCT) scan, intraoral photographs, and radiographs. AI-facilitated predictive analysis has enhanced personalized care planning and disease avoidance, and AI-facilitated automation of workflows has maximized administrative workflows and patient record management. U-Net-based segmentation models exhibit sensitivities and specificities of approximately 93.0% and 88.0%, respectively, in identifying periapical lesions on 2D CBCT slices. TensorFlow-based workflow modules, integrated into vendor platforms such as Planmeca Romexis, can reduce the processing time of patient records by a minimum of 30 percent in standard practice. The privacy-preserving federated learning architecture has attained cross-site model consistency exceeding 90% accuracy, enabling collaborative training among diverse dentistry clinics. Explainable AI (XAI) and federated learning have enhanced AI transparency and security with technological advancement, but barriers include concerns regarding data privacy, AI bias, gaps in AI regulating, and training clinicians.
Conclusions: AI is revolutionizing dentistry with enhanced diagnostic accuracy, predictive planning, and efficient administration automation. With technology developing AI software even smarter, ethics and legislation have to follow in order to allow responsible AI integration. To make AI in dental care work at its best, future research will have to prioritize AI interpretability, developing uniform protocols, and collaboration between specialties in order to allow AI's full potential in dentistry.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering