Luana Alexandrescu, Ionut Tiberiu Tofolean, Laura Maria Condur, Doina Ecaterina Tofolean, Alina Doina Nicoara, Lucian Serbanescu, Elena Rusu, Andreea Nelson Twakor, Eugen Dumitru, Andrei Dumitru, Cristina Tocia, Lucian Flavius Herlo, Daria Maria Alexandrescu, Alina Mihaela Stanigut
{"title":"Smart Microbiomes: How AI Is Revolutionizing Personalized Medicine.","authors":"Luana Alexandrescu, Ionut Tiberiu Tofolean, Laura Maria Condur, Doina Ecaterina Tofolean, Alina Doina Nicoara, Lucian Serbanescu, Elena Rusu, Andreea Nelson Twakor, Eugen Dumitru, Andrei Dumitru, Cristina Tocia, Lucian Flavius Herlo, Daria Maria Alexandrescu, Alina Mihaela Stanigut","doi":"10.3390/bioengineering12090944","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Recent studies have shown that gut microbiota have important roles in different human diseases. There has been an ever-increasing application of high-throughput technologies for the characterization of microbial ecosystems. This led to an explosion of various molecular profiling data, and the analysis of such data has shown that machine-learning algorithms have been useful in identifying key molecular signatures. <b>Results:</b> In this review, we first analyze how dysbiosis of the intestinal microbiota relates to human disease and how possible modulation of the gut microbial ecosystem may be used for disease intervention. Further, we introduce categories and the workflows of different machine-learning approaches and how they perform integrative analysis of multi-omics data. Last, we review advances of machine learning in gut microbiome applications and discuss challenges it faces. <b>Conclusions:</b> We conclude that machine learning is indeed well suited for analyzing gut microbiome and that these approaches are beneficial for developing gut microbe-targeted therapies, helping in achieving personalized and precision medicine.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12466996/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090944","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Recent studies have shown that gut microbiota have important roles in different human diseases. There has been an ever-increasing application of high-throughput technologies for the characterization of microbial ecosystems. This led to an explosion of various molecular profiling data, and the analysis of such data has shown that machine-learning algorithms have been useful in identifying key molecular signatures. Results: In this review, we first analyze how dysbiosis of the intestinal microbiota relates to human disease and how possible modulation of the gut microbial ecosystem may be used for disease intervention. Further, we introduce categories and the workflows of different machine-learning approaches and how they perform integrative analysis of multi-omics data. Last, we review advances of machine learning in gut microbiome applications and discuss challenges it faces. Conclusions: We conclude that machine learning is indeed well suited for analyzing gut microbiome and that these approaches are beneficial for developing gut microbe-targeted therapies, helping in achieving personalized and precision medicine.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering