Pulin Sun, Chulong Zhang, Zhenyu Yang, Fang-Fang Yin, Manju Liu
{"title":"An Implicit Registration Framework Integrating Kolmogorov-Arnold Networks with Velocity Regularization for Image-Guided Radiation Therapy.","authors":"Pulin Sun, Chulong Zhang, Zhenyu Yang, Fang-Fang Yin, Manju Liu","doi":"10.3390/bioengineering12091005","DOIUrl":null,"url":null,"abstract":"<p><p>In image-guided radiation therapy (IGRT), deformable image registration between computed tomography (CT) and cone beam computed tomography (CBCT) images remain challenging due to the computational cost of iterative algorithms and the data dependence of supervised deep learning methods. Implicit neural representation (INR) provides a promising alternative, but conventional multilayer perceptron (MLP) might struggle to efficiently represent complex, nonlinear deformations. This study introduces a novel INR-based registration framework that models the deformation as a continuous, time-varying velocity field, parameterized by a Kolmogorov-Arnold Network (KAN) constructed using Jacobi polynomials. To our knowledge, this is the first integration of KAN into medical image registration, establishing a new paradigm beyond standard MLP-based INR. For improved efficiency, the KAN estimates low-dimensional principal components of the velocity field, which are reconstructed via inverse principal component analysis and temporally integrated to derive the final deformation. This approach achieves a ~70% improvement in computational efficiency relative to direct velocity field modeling while ensuring smooth and topology-preserving transformations through velocity regularization. Evaluation on a publicly available pelvic CT-CBCT dataset demonstrates up to 6% improvement in registration accuracy over traditional iterative methods and ~3% over MLP-based INR baselines, indicating the potential of the proposed method as an efficient and generalizable alternative for deformable registration.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467330/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12091005","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In image-guided radiation therapy (IGRT), deformable image registration between computed tomography (CT) and cone beam computed tomography (CBCT) images remain challenging due to the computational cost of iterative algorithms and the data dependence of supervised deep learning methods. Implicit neural representation (INR) provides a promising alternative, but conventional multilayer perceptron (MLP) might struggle to efficiently represent complex, nonlinear deformations. This study introduces a novel INR-based registration framework that models the deformation as a continuous, time-varying velocity field, parameterized by a Kolmogorov-Arnold Network (KAN) constructed using Jacobi polynomials. To our knowledge, this is the first integration of KAN into medical image registration, establishing a new paradigm beyond standard MLP-based INR. For improved efficiency, the KAN estimates low-dimensional principal components of the velocity field, which are reconstructed via inverse principal component analysis and temporally integrated to derive the final deformation. This approach achieves a ~70% improvement in computational efficiency relative to direct velocity field modeling while ensuring smooth and topology-preserving transformations through velocity regularization. Evaluation on a publicly available pelvic CT-CBCT dataset demonstrates up to 6% improvement in registration accuracy over traditional iterative methods and ~3% over MLP-based INR baselines, indicating the potential of the proposed method as an efficient and generalizable alternative for deformable registration.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering