AI-Assisted Fusion Technique for Orthodontic Diagnosis Between Cone-Beam Computed Tomography and Face Scan Data.

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Than Trong Khanh Dat, Jang-Hoon Ahn, Hyunkyo Lim, Jonghun Yoon
{"title":"AI-Assisted Fusion Technique for Orthodontic Diagnosis Between Cone-Beam Computed Tomography and Face Scan Data.","authors":"Than Trong Khanh Dat, Jang-Hoon Ahn, Hyunkyo Lim, Jonghun Yoon","doi":"10.3390/bioengineering12090975","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a deep learning-based approach that integrates cone-beam computed tomography (CBCT) with facial scan data, aiming to enhance diagnostic accuracy and treatment planning in medical imaging, particularly in cosmetic surgery and orthodontics. The method combines facial mesh detection with the iterative closest point (ICP) algorithm to address common challenges such as differences in data acquisition times and extraneous details in facial scans. By leveraging a deep learning model, the system achieves more precise facial mesh detection, thereby enabling highly accurate initial alignment. Experimental results demonstrate average registration errors of approximately 0.3 mm (inlier RMSE), even when CBCT and facial scans are acquired independently. These results should be regarded as preliminary, representing a feasibility study rather than conclusive evidence of clinical accuracy. Nevertheless, the approach demonstrates consistent performance across different scan orientations, suggesting potential for future clinical application. Furthermore, the deep learning framework effectively handles diverse and complex facial geometries, thereby improving the reliability of the alignment process. This integration not only enhances the precision of 3D facial recognition but also improves the efficiency of clinical workflows. Future developments will aim to reduce processing time and enable simultaneous data capture to further improve accuracy and operational efficiency. Overall, this approach provides a powerful tool for practitioners, contributing to improved diagnostic outcomes and optimized treatment strategies in medical imaging.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467118/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090975","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a deep learning-based approach that integrates cone-beam computed tomography (CBCT) with facial scan data, aiming to enhance diagnostic accuracy and treatment planning in medical imaging, particularly in cosmetic surgery and orthodontics. The method combines facial mesh detection with the iterative closest point (ICP) algorithm to address common challenges such as differences in data acquisition times and extraneous details in facial scans. By leveraging a deep learning model, the system achieves more precise facial mesh detection, thereby enabling highly accurate initial alignment. Experimental results demonstrate average registration errors of approximately 0.3 mm (inlier RMSE), even when CBCT and facial scans are acquired independently. These results should be regarded as preliminary, representing a feasibility study rather than conclusive evidence of clinical accuracy. Nevertheless, the approach demonstrates consistent performance across different scan orientations, suggesting potential for future clinical application. Furthermore, the deep learning framework effectively handles diverse and complex facial geometries, thereby improving the reliability of the alignment process. This integration not only enhances the precision of 3D facial recognition but also improves the efficiency of clinical workflows. Future developments will aim to reduce processing time and enable simultaneous data capture to further improve accuracy and operational efficiency. Overall, this approach provides a powerful tool for practitioners, contributing to improved diagnostic outcomes and optimized treatment strategies in medical imaging.

人工智能辅助锥束ct与面部扫描数据融合正畸诊断技术。
本研究提出了一种基于深度学习的方法,将锥束计算机断层扫描(CBCT)与面部扫描数据相结合,旨在提高医学成像的诊断准确性和治疗计划,特别是在美容手术和正畸方面。该方法将面部网格检测与迭代最近点(ICP)算法相结合,以解决面部扫描中数据采集时间差异和无关细节等常见挑战。通过利用深度学习模型,系统实现了更精确的面部网格检测,从而实现了高精度的初始对齐。实验结果表明,即使单独获得CBCT和面部扫描,平均配准误差也约为0.3 mm。这些结果应被视为初步的,代表可行性研究,而不是临床准确性的结论性证据。尽管如此,该方法在不同的扫描方向上表现出一致的性能,这表明了未来临床应用的潜力。此外,深度学习框架有效地处理各种复杂的面部几何形状,从而提高对齐过程的可靠性。这种集成不仅提高了三维人脸识别的精度,而且提高了临床工作流程的效率。未来的发展将旨在缩短处理时间,实现同步数据捕获,以进一步提高准确性和操作效率。总的来说,这种方法为从业者提供了一个强大的工具,有助于改善诊断结果和优化医疗成像的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信