Jiangxia Duan, Meiwei Zhang, Minghui Song, Xiaopan Xu, Hongbing Lu
{"title":"Eye Tracking-Enhanced Deep Learning for Medical Image Analysis: A Systematic Review on Data Efficiency, Interpretability, and Multimodal Integration.","authors":"Jiangxia Duan, Meiwei Zhang, Minghui Song, Xiaopan Xu, Hongbing Lu","doi":"10.3390/bioengineering12090954","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning (DL) has revolutionized medical image analysis (MIA), enabling early anomaly detection, precise lesion segmentation, and automated disease classification. However, its clinical integration faces two major challenges: reliance on limited, narrowly annotated datasets that inadequately capture real-world patient diversity, and the inherent \"black-box\" nature of DL decision-making, which complicates physician scrutiny and accountability. Eye tracking (ET) technology offers a transformative solution by capturing radiologists' gaze patterns to generate supervisory signals. These signals enhance DL models through two key mechanisms: providing weak supervision to improve feature recognition and diagnostic accuracy, particularly when labeled data are scarce, and enabling direct comparison between machine and human attention to bridge interpretability gaps and build clinician trust. This approach also extends effectively to multimodal learning models (MLMs) and vision-language models (VLMs), supporting the alignment of machine reasoning with clinical expertise by grounding visual observations in diagnostic context, refining attention mechanisms, and validating complex decision pathways. Conducted in accordance with the PRISMA statement and registered in PROSPERO (ID: CRD42024569630), this review synthesizes state-of-the-art strategies for ET-DL integration. We further propose a unified framework in which ET innovatively serves as a data efficiency optimizer, a model interpretability validator, and a multimodal alignment supervisor. This framework paves the way for clinician-centered AI systems that prioritize verifiable reasoning, seamless workflow integration, and intelligible performance, thereby addressing key implementation barriers and outlining a path for future clinical deployment.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467291/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090954","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning (DL) has revolutionized medical image analysis (MIA), enabling early anomaly detection, precise lesion segmentation, and automated disease classification. However, its clinical integration faces two major challenges: reliance on limited, narrowly annotated datasets that inadequately capture real-world patient diversity, and the inherent "black-box" nature of DL decision-making, which complicates physician scrutiny and accountability. Eye tracking (ET) technology offers a transformative solution by capturing radiologists' gaze patterns to generate supervisory signals. These signals enhance DL models through two key mechanisms: providing weak supervision to improve feature recognition and diagnostic accuracy, particularly when labeled data are scarce, and enabling direct comparison between machine and human attention to bridge interpretability gaps and build clinician trust. This approach also extends effectively to multimodal learning models (MLMs) and vision-language models (VLMs), supporting the alignment of machine reasoning with clinical expertise by grounding visual observations in diagnostic context, refining attention mechanisms, and validating complex decision pathways. Conducted in accordance with the PRISMA statement and registered in PROSPERO (ID: CRD42024569630), this review synthesizes state-of-the-art strategies for ET-DL integration. We further propose a unified framework in which ET innovatively serves as a data efficiency optimizer, a model interpretability validator, and a multimodal alignment supervisor. This framework paves the way for clinician-centered AI systems that prioritize verifiable reasoning, seamless workflow integration, and intelligible performance, thereby addressing key implementation barriers and outlining a path for future clinical deployment.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering