Serena Filoni, Francesco Romano, Daniela Cardone, Roberta Palmieri, Alessandro Forte, Angelo Di Iorio, Rocco Salvatore Calabrò, Raffaello Pellegrino, Chiara Palmieri, Emanuele Francesco Russo, David Perpetuini, Arcangelo Merla
{"title":"Acute and Subacute Effects of Session with the EXOPULSE Mollii Suit in a Multiple Sclerosis Patient: A Case Report.","authors":"Serena Filoni, Francesco Romano, Daniela Cardone, Roberta Palmieri, Alessandro Forte, Angelo Di Iorio, Rocco Salvatore Calabrò, Raffaello Pellegrino, Chiara Palmieri, Emanuele Francesco Russo, David Perpetuini, Arcangelo Merla","doi":"10.3390/bioengineering12090994","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a chronic neurological disease often resulting in motor and autonomic dysfunction. This case report investigates the acute and subacute effects of the EXOPULSE Mollii Suit (EMS), a wearable device capable of delivering transcutaneous electrical nerve stimulation to multiple anatomical regions, in a 43-year-old woman with MS. The patient underwent a clinical evaluation before the EMS treatment, during which central nervous system (CNS) and autonomic nervous system (ANS) responses were monitored using electroencephalography (EEG), heart rate variability (HRV), and infrared thermography (IRT). Immediately after the first EMS application, the clinical evaluation was repeated. The intervention continued at home for one month, followed by a post-treatment evaluation similar to the pre-intervention assessment. Functional evaluations showed improvements in sit-to-stand performance (from 8 s to 6 s), muscle tone (MAS scale for the right side from 3 to 2 and for the left side from 2 to 1), clonus, and spasticity (from 3 to 2). EEG results revealed decreased θ-band power (on average, from 0.394 to 0.253) and microstates' reorganization. ANS activity modifications were highlighted by both HRV (e.g., RMSSD from 0.118 to 0.0837) and IRT metrics (e.g., nose tip temperature sample entropy from 0.090 to 0.239). This study provides the first integrated analysis of CNS and ANS responses to EMS in an MS patient, combining functional scales with multimodal instrumental measurements, emphasizing the possible advantages EMS for MS treatment. Although preliminary, these results demonstrated the potentiality of the EMS to deliver effective and personalized rehabilitative interventions for MS patients.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 9","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12467079/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12090994","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple sclerosis (MS) is a chronic neurological disease often resulting in motor and autonomic dysfunction. This case report investigates the acute and subacute effects of the EXOPULSE Mollii Suit (EMS), a wearable device capable of delivering transcutaneous electrical nerve stimulation to multiple anatomical regions, in a 43-year-old woman with MS. The patient underwent a clinical evaluation before the EMS treatment, during which central nervous system (CNS) and autonomic nervous system (ANS) responses were monitored using electroencephalography (EEG), heart rate variability (HRV), and infrared thermography (IRT). Immediately after the first EMS application, the clinical evaluation was repeated. The intervention continued at home for one month, followed by a post-treatment evaluation similar to the pre-intervention assessment. Functional evaluations showed improvements in sit-to-stand performance (from 8 s to 6 s), muscle tone (MAS scale for the right side from 3 to 2 and for the left side from 2 to 1), clonus, and spasticity (from 3 to 2). EEG results revealed decreased θ-band power (on average, from 0.394 to 0.253) and microstates' reorganization. ANS activity modifications were highlighted by both HRV (e.g., RMSSD from 0.118 to 0.0837) and IRT metrics (e.g., nose tip temperature sample entropy from 0.090 to 0.239). This study provides the first integrated analysis of CNS and ANS responses to EMS in an MS patient, combining functional scales with multimodal instrumental measurements, emphasizing the possible advantages EMS for MS treatment. Although preliminary, these results demonstrated the potentiality of the EMS to deliver effective and personalized rehabilitative interventions for MS patients.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering