Exosomes derived from ADSC suppress endothelial cells ferroptosis and alleviate sepsis acute liver injury via regulation of Keap1/Nrf2/GPX4 axis: an experimental study.
IF 3.6 2区 医学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xianqi Wang, Dan Wu, Xiaoyang Liu, Yanan Xu, Peiwen Wang, Heliang Fu, Yuexiang Ma, Shanshou Liu, Qianmei Wang, Xian-Jie Xu, Zheng Dai, Qi Zhang, Wen Yin, Kuo Shen, Junjie Li
{"title":"Exosomes derived from ADSC suppress endothelial cells ferroptosis and alleviate sepsis acute liver injury via regulation of Keap1/Nrf2/GPX4 axis: an experimental study.","authors":"Xianqi Wang, Dan Wu, Xiaoyang Liu, Yanan Xu, Peiwen Wang, Heliang Fu, Yuexiang Ma, Shanshou Liu, Qianmei Wang, Xian-Jie Xu, Zheng Dai, Qi Zhang, Wen Yin, Kuo Shen, Junjie Li","doi":"10.1093/stmcls/sxaf063","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Adipose-derived stem cells exosome (ADSC-exo) has been reported to be effective in alleviating organ dysfunction in sepsis, including acute liver injury (ALI). Whether ADSC-exo protects the liver via suppression of vascular endothelial cell (VEC) ferroptosis is unclear.</p><p><strong>Methods: </strong>We evaluated the viability and migration of VECs and their ferroptosis-related indices. To further elucidate this mechanism, we examined the Nrf2/GPX4 pathway. Cecal ligation and puncture (CLP) was performed to establish a sepsis model to observe the protective effect of ADSC-exo. The death rate and liver tissue injury were observed. We also evaluated inflammation- and ferroptosis-related indices. Next, we examined the expression of nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) pathway-related molecules to elucidate the underlying mechanism.</p><p><strong>Results: </strong>ADSC-exo reduced cell injury and ferroptosis in VECs. ADSC-exo increased the expression and nuclear translocation of Nrf2. In the CLP-induced sepsis model, ADSC-exo relieved liver injury and reduced the death rate. Further observations showed that ADSC-exo significantly alleviated oxidative stress injury and ferroptosis in liver tissue, while remarkably increasing the expression of Nrf2 and GPX4.</p><p><strong>Conclusion: </strong>These findings demonstrate the remarkable ability of ADSC-exo to alleviate sepsis-induced ALI by mitigating endothelial cell ferroptosis, providing evidence for the potential clinical application of ADSC-exo in ALI therapy.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxaf063","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Adipose-derived stem cells exosome (ADSC-exo) has been reported to be effective in alleviating organ dysfunction in sepsis, including acute liver injury (ALI). Whether ADSC-exo protects the liver via suppression of vascular endothelial cell (VEC) ferroptosis is unclear.
Methods: We evaluated the viability and migration of VECs and their ferroptosis-related indices. To further elucidate this mechanism, we examined the Nrf2/GPX4 pathway. Cecal ligation and puncture (CLP) was performed to establish a sepsis model to observe the protective effect of ADSC-exo. The death rate and liver tissue injury were observed. We also evaluated inflammation- and ferroptosis-related indices. Next, we examined the expression of nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) pathway-related molecules to elucidate the underlying mechanism.
Results: ADSC-exo reduced cell injury and ferroptosis in VECs. ADSC-exo increased the expression and nuclear translocation of Nrf2. In the CLP-induced sepsis model, ADSC-exo relieved liver injury and reduced the death rate. Further observations showed that ADSC-exo significantly alleviated oxidative stress injury and ferroptosis in liver tissue, while remarkably increasing the expression of Nrf2 and GPX4.
Conclusion: These findings demonstrate the remarkable ability of ADSC-exo to alleviate sepsis-induced ALI by mitigating endothelial cell ferroptosis, providing evidence for the potential clinical application of ADSC-exo in ALI therapy.
期刊介绍:
STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology.
STEM CELLS covers:
Cancer Stem Cells,
Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells,
Regenerative Medicine,
Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics,
Tissue-Specific Stem Cells,
Translational and Clinical Research.