Vacuum Branching, Dark Energy, Dark Matter

IF 1 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Don Weingarten
{"title":"Vacuum Branching, Dark Energy, Dark Matter","authors":"Don Weingarten","doi":"10.1007/s10701-025-00864-z","DOIUrl":null,"url":null,"abstract":"<div><p>Beginning with the Everett-DeWitt many-worlds interpretation of quantum mechanics, there have been a series of proposals for how the state vector of a quantum system might split at any instant into orthogonal branches, each of which exhibits approximately classical behavior. In an earlier version of the present work, we proposed a decomposition of a state vector into branches by finding the minimum of a measure of the mean squared quantum complexity of the branches in the branch decomposition. In the present article, we adapt the earlier version to quantum electrodynamics of electrons and protons on a lattice in Minkowski space. The earlier version, however, here is simplified by replacing a definition of complexity which takes the physical vacuum as 0 complexity starting point, with a definition which takes the bare vacuum as starting point. As a consequence of this replacement, the physical vacuum itself is expected to branch yielding branches with energy densities slightly larger than that of the unbranched vacuum. If the vacuum energy renormalization constant is chosen as usual to give 0 energy density to the unbranched vacuum, in an expanding universe vacuum branches will appear to have a combination of dark energy and dark matter densities. The hypothesis that vacuum branching is the origin of the observed dark energy and dark matter densities leads to an estimate of <span>\\(\\mathcal {O}(10^{-18} {m}^3)\\)</span> for the parameter <i>b</i> which enters the complexity measure governing branch formation and sets the boundary between quantum and classical behavior.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-025-00864-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Beginning with the Everett-DeWitt many-worlds interpretation of quantum mechanics, there have been a series of proposals for how the state vector of a quantum system might split at any instant into orthogonal branches, each of which exhibits approximately classical behavior. In an earlier version of the present work, we proposed a decomposition of a state vector into branches by finding the minimum of a measure of the mean squared quantum complexity of the branches in the branch decomposition. In the present article, we adapt the earlier version to quantum electrodynamics of electrons and protons on a lattice in Minkowski space. The earlier version, however, here is simplified by replacing a definition of complexity which takes the physical vacuum as 0 complexity starting point, with a definition which takes the bare vacuum as starting point. As a consequence of this replacement, the physical vacuum itself is expected to branch yielding branches with energy densities slightly larger than that of the unbranched vacuum. If the vacuum energy renormalization constant is chosen as usual to give 0 energy density to the unbranched vacuum, in an expanding universe vacuum branches will appear to have a combination of dark energy and dark matter densities. The hypothesis that vacuum branching is the origin of the observed dark energy and dark matter densities leads to an estimate of \(\mathcal {O}(10^{-18} {m}^3)\) for the parameter b which enters the complexity measure governing branch formation and sets the boundary between quantum and classical behavior.

真空分支,暗能量,暗物质
从Everett-DeWitt对量子力学的多世界解释开始,已经有了一系列关于量子系统的状态向量如何在任何时刻分裂成正交分支的建议,每个分支都表现出近似经典的行为。在本工作的早期版本中,我们通过找到分支分解中分支的均方量子复杂性的最小值,提出了将状态向量分解为分支的方法。在本文中,我们将早期的版本改编为闵可夫斯基空间中晶格上的电子和质子的量子电动力学。然而,这里的早期版本通过将以物理真空为0复杂性起点的复杂性定义替换为以裸真空为起点的定义而进行了简化。作为这种替换的结果,预计物理真空本身会产生分支,产生能量密度略大于未分支真空的分支。如果像往常一样选择真空能量重整常数使无分支真空的能量密度为0,那么在膨胀的宇宙中,真空分支似乎具有暗能量和暗物质密度的组合。真空分支是观测到的暗能量和暗物质密度的起源的假设导致参数b的估计为\(\mathcal {O}(10^{-18} {m}^3)\),该参数b进入控制分支形成的复杂性度量,并设置量子和经典行为之间的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations of Physics
Foundations of Physics 物理-物理:综合
CiteScore
2.70
自引率
6.70%
发文量
104
审稿时长
6-12 weeks
期刊介绍: The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others. Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments. Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises. The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信