Optimizing Selective Laser Melting of a High-Alloyed Ni-Based Superalloy: Achieving Crack-Free Fabrication with Enhanced Microstructure and Mechanical Properties

IF 3.9 2区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Lihua Zhu, Bing Wei, Kaiqi Wang, Changjie Zhou, Hongjun Ji
{"title":"Optimizing Selective Laser Melting of a High-Alloyed Ni-Based Superalloy: Achieving Crack-Free Fabrication with Enhanced Microstructure and Mechanical Properties","authors":"Lihua Zhu,&nbsp;Bing Wei,&nbsp;Kaiqi Wang,&nbsp;Changjie Zhou,&nbsp;Hongjun Ji","doi":"10.1007/s40195-025-01900-7","DOIUrl":null,"url":null,"abstract":"<div><p>Selective laser melting, a predominant additive manufacturing technology for fabricating geometrically complex components, faces significant challenges when processing high-performance Ni-based superalloys containing elevated Al and Ti concentrations (typically &gt; 6 wt%), particularly regarding micro-cracking susceptibility. In this study, we demonstrate the successful fabrication of a novel crack-free Ni-based superalloy with 6.4 wt% (Al + Ti) content via optimized energy density, systematically investigating its microstructure, defects, and mechanical properties. Process parameter analysis revealed that insufficient energy densities led to unmolten pores, while excessively high energy densities caused keyhole formation. With an optimal energy density of 51.1 J/mm<sup>3</sup>, the crack-free superalloy exhibited exceptional mechanical properties: room temperature tensile strength of 1130 MPa with 36% elongation and elevated-temperature strength reaching 1198 MPa at 750 °C. This strength enhancement correlates with the precipitation of nanoscale γ′ phases (mean size: 31.56 nm) during high temperature. Furthermore, the mechanism of crack suppression is explained from multiple aspects, including energy density, grain structure, grain boundary characteristics, and the distribution of secondary phases. The absence of low-melting-point eutectic phases and brittle phases during the printing process is also explained from the perspective of alloy composition. These findings provide a comprehensive framework for alloy design and process optimization in additive manufacturing of defect-resistant Ni-based superalloys.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"38 10","pages":"1719 - 1734"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-025-01900-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Selective laser melting, a predominant additive manufacturing technology for fabricating geometrically complex components, faces significant challenges when processing high-performance Ni-based superalloys containing elevated Al and Ti concentrations (typically > 6 wt%), particularly regarding micro-cracking susceptibility. In this study, we demonstrate the successful fabrication of a novel crack-free Ni-based superalloy with 6.4 wt% (Al + Ti) content via optimized energy density, systematically investigating its microstructure, defects, and mechanical properties. Process parameter analysis revealed that insufficient energy densities led to unmolten pores, while excessively high energy densities caused keyhole formation. With an optimal energy density of 51.1 J/mm3, the crack-free superalloy exhibited exceptional mechanical properties: room temperature tensile strength of 1130 MPa with 36% elongation and elevated-temperature strength reaching 1198 MPa at 750 °C. This strength enhancement correlates with the precipitation of nanoscale γ′ phases (mean size: 31.56 nm) during high temperature. Furthermore, the mechanism of crack suppression is explained from multiple aspects, including energy density, grain structure, grain boundary characteristics, and the distribution of secondary phases. The absence of low-melting-point eutectic phases and brittle phases during the printing process is also explained from the perspective of alloy composition. These findings provide a comprehensive framework for alloy design and process optimization in additive manufacturing of defect-resistant Ni-based superalloys.

优化高合金镍基高温合金的选择性激光熔化:实现无裂纹加工并增强显微组织和力学性能
选择性激光熔化是一种主要的用于制造几何复杂部件的增材制造技术,在加工含有高Al和Ti浓度(通常为6 wt%)的高性能ni基高温合金时面临着重大挑战,特别是在微裂纹敏感性方面。在本研究中,我们通过优化能量密度成功制备了一种新型无裂纹的(Al + Ti)含量为6.4 wt%的镍基高温合金,并系统地研究了其显微组织、缺陷和力学性能。工艺参数分析表明,能量密度不足导致孔隙未熔化,而能量密度过高导致形成锁孔。当能量密度为51.1 J/mm3时,无裂纹高温合金表现出优异的力学性能:室温抗拉强度为1130 MPa,伸长率为36%,750℃高温强度达到1198 MPa。这种强度增强与高温下纳米级γ′相(平均尺寸31.56 nm)的析出有关。从能量密度、晶粒结构、晶界特征、二次相分布等方面解释了裂纹抑制机理。从合金成分的角度解释了印刷过程中没有低熔点共晶相和脆性相的原因。这些发现为抗缺陷镍基高温合金增材制造的合金设计和工艺优化提供了一个全面的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Metallurgica Sinica-English Letters
Acta Metallurgica Sinica-English Letters METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.60
自引率
14.30%
发文量
122
审稿时长
2 months
期刊介绍: This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信