{"title":"Design of a novel nozzle for rocket engines with full flow at sea level","authors":"Y. Z. Liu, Z. Wang, P. Li","doi":"10.1007/s00193-025-01236-2","DOIUrl":null,"url":null,"abstract":"<div><p>To prevent flow separation under overexpanded conditions in traditional large-area-ratio nozzles of rocket engines at sea level, the method of characteristics for wall pressure control is adopted. This method, which is based on thrust-optimized contours, can be implemented to redesign the latter half of a divergent contour to ensure that the wall pressure of the new contour is not less than the critical separation pressure of 0.03 MPa. The newly generated nozzle is named the full-flow nozzle. Then, the design method is verified by simulations, and the performance of full-flow nozzles is evaluated. The results show that the method of wall pressure control can achieve the intended purpose, and the newly generated contour ensures that the nozzle is not only in the full-flow state at sea level but also able to withstand combustion chamber or ambient pressure fluctuations. The combustion chamber pressure is 8.5 MPa, and the specific heat ratio of hot gas is 1.144. Compared with the thrust-optimized contour with an area ratio of 40, in which the flow tends to separate at sea level, the full-flow nozzle can increase the area ratio to 60. Thus, the vacuum specific impulse can be increased by approximately 5.24 s. Compared with the thrust-optimized contour nozzle with an area ratio of 60, the vacuum specific impulse of the full-flow nozzle with an equal area ratio is decreased by 1.57 s.\n</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"35 4","pages":"413 - 421"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-025-01236-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
To prevent flow separation under overexpanded conditions in traditional large-area-ratio nozzles of rocket engines at sea level, the method of characteristics for wall pressure control is adopted. This method, which is based on thrust-optimized contours, can be implemented to redesign the latter half of a divergent contour to ensure that the wall pressure of the new contour is not less than the critical separation pressure of 0.03 MPa. The newly generated nozzle is named the full-flow nozzle. Then, the design method is verified by simulations, and the performance of full-flow nozzles is evaluated. The results show that the method of wall pressure control can achieve the intended purpose, and the newly generated contour ensures that the nozzle is not only in the full-flow state at sea level but also able to withstand combustion chamber or ambient pressure fluctuations. The combustion chamber pressure is 8.5 MPa, and the specific heat ratio of hot gas is 1.144. Compared with the thrust-optimized contour with an area ratio of 40, in which the flow tends to separate at sea level, the full-flow nozzle can increase the area ratio to 60. Thus, the vacuum specific impulse can be increased by approximately 5.24 s. Compared with the thrust-optimized contour nozzle with an area ratio of 60, the vacuum specific impulse of the full-flow nozzle with an equal area ratio is decreased by 1.57 s.
期刊介绍:
Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization.
The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine.
Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community.
The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.