{"title":"Multiple Sources of a Type II Radio Burst Within a Coronal Mass Ejection","authors":"Shiwei Feng, Pietro Zucca","doi":"10.1007/s11207-025-02520-1","DOIUrl":null,"url":null,"abstract":"<div><p>Solar type II radio bursts are generated through plasma emission caused by energetic electrons that are accelerated by shock waves during solar eruptions. These bursts serve as tracers of shock waves in the corona. However, the complexity of solar eruptions and the lack of radio imaging observations have hampered our understanding of type II bursts. The newly built Daocheng Solar Radio Telescope (DSRT) detected a rare type II burst. Its harmonic shows an initial herringbone (HB), followed by three nearly parallel lanes. These lanes form a framed pattern: a central main lane (termed MAIN) with a higher brightness temperature and wider bandwidth, flanked by two well-defined fringes, F1 and F2. Radio and extreme ultraviolet imaging observations indicate that the sources of the HB are precisely located on the flank of the leading shock wave driven by a coronal mass ejection (CME). In contrast, the MAIN and F2 sources correlate in terms of time, location, electron number density, and propagation velocity with an ascending coronal loop. In contrast, the F1 sources are associated with a nearby but distinct coronal loop. These observations suggest that at least three sources of the type II burst accompany the CME. A scenario involving multiple shock waves within the CME is proposed to explain the presence of the different radio sources.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 8","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-025-02520-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Solar type II radio bursts are generated through plasma emission caused by energetic electrons that are accelerated by shock waves during solar eruptions. These bursts serve as tracers of shock waves in the corona. However, the complexity of solar eruptions and the lack of radio imaging observations have hampered our understanding of type II bursts. The newly built Daocheng Solar Radio Telescope (DSRT) detected a rare type II burst. Its harmonic shows an initial herringbone (HB), followed by three nearly parallel lanes. These lanes form a framed pattern: a central main lane (termed MAIN) with a higher brightness temperature and wider bandwidth, flanked by two well-defined fringes, F1 and F2. Radio and extreme ultraviolet imaging observations indicate that the sources of the HB are precisely located on the flank of the leading shock wave driven by a coronal mass ejection (CME). In contrast, the MAIN and F2 sources correlate in terms of time, location, electron number density, and propagation velocity with an ascending coronal loop. In contrast, the F1 sources are associated with a nearby but distinct coronal loop. These observations suggest that at least three sources of the type II burst accompany the CME. A scenario involving multiple shock waves within the CME is proposed to explain the presence of the different radio sources.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.