On \( b\)-concatenations of two \( k\)-generalized Fibonacci numbers

IF 0.6 3区 数学 Q3 MATHEMATICS
M. Alan, A. Altassan
{"title":"On \\( b\\)-concatenations of two \\( k\\)-generalized Fibonacci numbers","authors":"M. Alan,&nbsp;A. Altassan","doi":"10.1007/s10474-025-01517-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\( k \\geq 2 \\)</span> be an integer. One of the generalization of the classical Fibonacci sequence is defined by the recurrence relation\n<span>\\( F_{n}^{(k)}=F_{n-1}^{(k)} + \\cdots + F_{n-k}^{(k)}\\)</span> for all <span>\\( n \\geq 2\\)</span> with the initial values <span>\\( F_{i}^{(k)}=0 \\)</span> for <span>\\( i=2-k, \\ldots, 0 \\)</span> and <span>\\( F_{1}^{(k)}=1\\)</span> <span>\\(. F_{n}^{(k)} \\)</span> is an order <span>\\( k \\)</span> generalization of the Fibonacci sequence and it is called <span>\\( k\\)</span>-generalized\nFibonacci sequence or shortly <span>\\( k\\)</span>-Fibonacci sequence. Banks and Luca [7], among other things, determined all Fibonacci numbers which are concatenations of two Fibonacci numbers. In this paper, we consider the analogue of this problem in more general manner by taking into account the concatenations of two terms of the same sequence in base <span>\\(b \\geq 2\\)</span>. First, we show that there exists only finitely many such concatenations for each <span>\\( k \\geq 2 \\)</span> and <span>\\( b \\geq 2 \\)</span>. Next, we completely determine all these concatenations for all <span>\\( k \\geq 2\\)</span> and <span>\\( 2 \\leq b \\leq 10 \\)</span>.</p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"175 2","pages":"452 - 471"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01517-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \( k \geq 2 \) be an integer. One of the generalization of the classical Fibonacci sequence is defined by the recurrence relation \( F_{n}^{(k)}=F_{n-1}^{(k)} + \cdots + F_{n-k}^{(k)}\) for all \( n \geq 2\) with the initial values \( F_{i}^{(k)}=0 \) for \( i=2-k, \ldots, 0 \) and \( F_{1}^{(k)}=1\) \(. F_{n}^{(k)} \) is an order \( k \) generalization of the Fibonacci sequence and it is called \( k\)-generalized Fibonacci sequence or shortly \( k\)-Fibonacci sequence. Banks and Luca [7], among other things, determined all Fibonacci numbers which are concatenations of two Fibonacci numbers. In this paper, we consider the analogue of this problem in more general manner by taking into account the concatenations of two terms of the same sequence in base \(b \geq 2\). First, we show that there exists only finitely many such concatenations for each \( k \geq 2 \) and \( b \geq 2 \). Next, we completely determine all these concatenations for all \( k \geq 2\) and \( 2 \leq b \leq 10 \).

关于两个\( k\)广义斐波那契数的\( b\) -连接
让 \( k \geq 2 \) 是一个整数。经典斐波那契数列的一个推广是用递归关系来定义的\( F_{n}^{(k)}=F_{n-1}^{(k)} + \cdots + F_{n-k}^{(k)}\) 对所有人 \( n \geq 2\) 初始值 \( F_{i}^{(k)}=0 \) 为了 \( i=2-k, \ldots, 0 \) 和 \( F_{1}^{(k)}=1\) \(. F_{n}^{(k)} \) 是命令 \( k \) 它被称为斐波那契数列的推广 \( k\)-广义斐波那契数列 \( k\)-斐波那契数列。Banks和Luca[7],除其他外,确定了所有的斐波那契数,这些斐波那契数是两个斐波那契数的连接。在本文中,我们考虑了这个问题的类比,在更一般的方式下,考虑了相同序列的两个项在基上的连接 \(b \geq 2\). 首先,我们证明了每个类只存在有限多个这样的连接 \( k \geq 2 \) 和 \( b \geq 2 \). 接下来,我们完全确定所有这些连接 \( k \geq 2\) 和 \( 2 \leq b \leq 10 \).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信