Seyed-Sajad Ahmadpour, Nima Jafari Navimipour, Mohammad Mosleh, Mojtaba Noorallahzadeh, Sankit Kassa, Suhaib Ahmed
{"title":"A new fault-tolerance majority voter circuit for quantum-based nano-scale digital systems","authors":"Seyed-Sajad Ahmadpour, Nima Jafari Navimipour, Mohammad Mosleh, Mojtaba Noorallahzadeh, Sankit Kassa, Suhaib Ahmed","doi":"10.1007/s10825-025-02357-8","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum-dot cellular automata (QCA) technology has gained attention lately due to its ability to reduce energy dissipation and minimize circuit area. However, the existing research shows that a critical challenge arises from the lack of circuit resistance in QCA systems when confronted with defects. This issue directly impacts circuit stability and output generation. Moreover, the 3-input majority gate (MV3) is a foundational component within QCA circuits, making its improvement crucial for developing fault-tolerant circuits. One approach is to design MV3 that incorporates essential quantum cells within a single clock cycle. Thus, this paper presents a unique cellular structure for the MV3 gate, utilizing simple quantum cells. The proposed gate, comprising only twelve cells, serves as a building block for QCA circuits. It boasts several key features, including low power consumption, efficient output polarity (± 9.93e00−1), and high reliability. Furthermore, to show the efficiency of the suggested gate, it is employed in realizing a 2:1 multiplexer and a full adder/subtractor. Lastly, the proposed MV3 gate is utilized to develop a simultaneous multi-logic gate which is producing several vital digital circuits, such as AND, OR, NOT, NAND, Copy, Subtractor, and Adder. The circuits are designed using QCADesigner and QCAPro, with power estimation included in the process. The comparative analysis reveals that the proposed structures significantly enhance the trade-off between complexity, fault tolerance, and power consumption compared to previous designs.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-025-02357-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum-dot cellular automata (QCA) technology has gained attention lately due to its ability to reduce energy dissipation and minimize circuit area. However, the existing research shows that a critical challenge arises from the lack of circuit resistance in QCA systems when confronted with defects. This issue directly impacts circuit stability and output generation. Moreover, the 3-input majority gate (MV3) is a foundational component within QCA circuits, making its improvement crucial for developing fault-tolerant circuits. One approach is to design MV3 that incorporates essential quantum cells within a single clock cycle. Thus, this paper presents a unique cellular structure for the MV3 gate, utilizing simple quantum cells. The proposed gate, comprising only twelve cells, serves as a building block for QCA circuits. It boasts several key features, including low power consumption, efficient output polarity (± 9.93e00−1), and high reliability. Furthermore, to show the efficiency of the suggested gate, it is employed in realizing a 2:1 multiplexer and a full adder/subtractor. Lastly, the proposed MV3 gate is utilized to develop a simultaneous multi-logic gate which is producing several vital digital circuits, such as AND, OR, NOT, NAND, Copy, Subtractor, and Adder. The circuits are designed using QCADesigner and QCAPro, with power estimation included in the process. The comparative analysis reveals that the proposed structures significantly enhance the trade-off between complexity, fault tolerance, and power consumption compared to previous designs.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.