Pei Cao, Wan Zhu, Deng Li, JiGang Zhang, Xing Feng
{"title":"Hesperetin ameliorates mitochondrial dysfunction in acute kidney injury by mediating autophagy and inhibiting the cGAS-STING pathway","authors":"Pei Cao, Wan Zhu, Deng Li, JiGang Zhang, Xing Feng","doi":"10.1007/s10735-025-10602-4","DOIUrl":null,"url":null,"abstract":"<div><p>Cisplatin-induced acute kidney injury (AKI) represents a severe complication of anticancer therapy with no effective clinical interventions, frequently necessitating chemotherapy dose reduction or discontinuation. Natural products have emerged as promising therapeutic candidates against cisplatin nephrotoxicity due to their multi-target mechanisms, pleiotropic effects, and low resistance potential. This study explored the therapeutic potential of hesperetin (Hes) in ameliorating mitochondrial dysfunction during AKI through coordinated induction of autophagy and suppression of the cGAS-STING pathway. We established an HK-2 cell injury model through cisplatin exposure. Following Hes intervention, cell viability was quantified via CCK-8 assays, apoptosis assessed by Annexin V-FITC/PI staining, and mitochondrial function evaluated through ATP production measurement, mitochondrial reactive oxygen species (ROS) detection and mitochondrial membrane potential analysis employing JC-1 staining. For in vivo validation, C57BL/6 mice developed AKI following single intraperitoneal cisplatin administration. Renal function parameters were determined through serum biochemistry, while renal histopathology was examined using periodic acid-Schiff (PAS) staining. Protein expression changes in mitochondrial autophagy markers and cGAS-STING pathway components were subsequently analyzed through immunofluorescence and Western blotting techniques. Autophagy modulators were employed to elucidate the precise mechanisms through which autophagy mediates Hes’s protective effects against cisplatin-induced AKI. In vitro, Hes intervention effectively reversed cisplatin-induced HK-2 cell injury and mitochondrial dysfunction while enhancing mitochondrial autophagy. Notably, the autophagy activator rapamycin alone, or co-administered with Hes produced comparable cytoprotective effects to Hes. Conversely, the autophagy inhibitor 3-methyladenine exacerbated cellular damage and partially attenuated Hes-mediated protection. In vivo studies confirmed Hes significantly ameliorated AKI through improved renal function and histopathology, concurrently reducing mitochondrial ROS levels while promoting autophagic clearance. Furthermore, Hes treatment potently suppressed activation of the cGAS-STING pathway in both experimental models. Hes ameliorates mitochondrial dysfunction in AKI by enhancing mitochondrial autophagy and inhibiting the cGAS-STING pathway.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":"56 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-025-10602-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cisplatin-induced acute kidney injury (AKI) represents a severe complication of anticancer therapy with no effective clinical interventions, frequently necessitating chemotherapy dose reduction or discontinuation. Natural products have emerged as promising therapeutic candidates against cisplatin nephrotoxicity due to their multi-target mechanisms, pleiotropic effects, and low resistance potential. This study explored the therapeutic potential of hesperetin (Hes) in ameliorating mitochondrial dysfunction during AKI through coordinated induction of autophagy and suppression of the cGAS-STING pathway. We established an HK-2 cell injury model through cisplatin exposure. Following Hes intervention, cell viability was quantified via CCK-8 assays, apoptosis assessed by Annexin V-FITC/PI staining, and mitochondrial function evaluated through ATP production measurement, mitochondrial reactive oxygen species (ROS) detection and mitochondrial membrane potential analysis employing JC-1 staining. For in vivo validation, C57BL/6 mice developed AKI following single intraperitoneal cisplatin administration. Renal function parameters were determined through serum biochemistry, while renal histopathology was examined using periodic acid-Schiff (PAS) staining. Protein expression changes in mitochondrial autophagy markers and cGAS-STING pathway components were subsequently analyzed through immunofluorescence and Western blotting techniques. Autophagy modulators were employed to elucidate the precise mechanisms through which autophagy mediates Hes’s protective effects against cisplatin-induced AKI. In vitro, Hes intervention effectively reversed cisplatin-induced HK-2 cell injury and mitochondrial dysfunction while enhancing mitochondrial autophagy. Notably, the autophagy activator rapamycin alone, or co-administered with Hes produced comparable cytoprotective effects to Hes. Conversely, the autophagy inhibitor 3-methyladenine exacerbated cellular damage and partially attenuated Hes-mediated protection. In vivo studies confirmed Hes significantly ameliorated AKI through improved renal function and histopathology, concurrently reducing mitochondrial ROS levels while promoting autophagic clearance. Furthermore, Hes treatment potently suppressed activation of the cGAS-STING pathway in both experimental models. Hes ameliorates mitochondrial dysfunction in AKI by enhancing mitochondrial autophagy and inhibiting the cGAS-STING pathway.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.