Manifestation of Quantum Forces in Spacetime: Towards a General Theory of Quantum Forces

IF 1 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Raheem Adom
{"title":"Manifestation of Quantum Forces in Spacetime: Towards a General Theory of Quantum Forces","authors":"Raheem Adom","doi":"10.1007/s10701-025-00857-y","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces the quantum force wave equation (QFWE) as a general theory of quantum forces (GToQF), a novel framework that redefines quantum forces as emergent phenomena arising from the interaction between quantum particles and curved spacetime. By coupling wave functions to spacetime curvature and gauge fields, the theory establishes a dynamic, bidirectional relationship between quantum states and spacetime geometry. This approach provides a unified description of quantum forces in highly curved and dynamic gravitational fields, extending beyond the limitations of existing theories. The theory offers fresh insights into quantum gravity, quantum field theory in curved spacetime, and particle physics in extreme conditions, serving as a versatile tool for exploring the interplay between quantum mechanics and spacetime structure. This work lays the foundation for the advancement of high-energy physics and cosmology in regimes where spacetime curvature is fundamental.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-025-00857-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces the quantum force wave equation (QFWE) as a general theory of quantum forces (GToQF), a novel framework that redefines quantum forces as emergent phenomena arising from the interaction between quantum particles and curved spacetime. By coupling wave functions to spacetime curvature and gauge fields, the theory establishes a dynamic, bidirectional relationship between quantum states and spacetime geometry. This approach provides a unified description of quantum forces in highly curved and dynamic gravitational fields, extending beyond the limitations of existing theories. The theory offers fresh insights into quantum gravity, quantum field theory in curved spacetime, and particle physics in extreme conditions, serving as a versatile tool for exploring the interplay between quantum mechanics and spacetime structure. This work lays the foundation for the advancement of high-energy physics and cosmology in regimes where spacetime curvature is fundamental.

量子力在时空中的表现:关于量子力的一般理论
本研究引入量子力波动方程(QFWE)作为量子力的一般理论(GToQF),将量子力重新定义为量子粒子与弯曲时空之间相互作用产生的新兴现象。通过将波函数与时空曲率和规范场耦合,该理论建立了量子态与时空几何之间的动态、双向关系。这种方法提供了高度弯曲和动态引力场中量子力的统一描述,超越了现有理论的局限性。该理论为量子引力、弯曲时空中的量子场论和极端条件下的粒子物理学提供了新的见解,为探索量子力学与时空结构之间的相互作用提供了一个通用的工具。这项工作为高能物理学和宇宙学的发展奠定了基础,其中时空曲率是基本的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations of Physics
Foundations of Physics 物理-物理:综合
CiteScore
2.70
自引率
6.70%
发文量
104
审稿时长
6-12 weeks
期刊介绍: The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others. Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments. Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises. The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信