Lipschitz Regularity of Fractional p-Laplacian

IF 2.6 1区 数学 Q1 MATHEMATICS
Anup Biswas, Erwin Topp
{"title":"Lipschitz Regularity of Fractional p-Laplacian","authors":"Anup Biswas,&nbsp;Erwin Topp","doi":"10.1007/s40818-025-00220-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we investigate the Hölder regularity of the fractional <span>\\(p\\)</span>-Laplace equation of the form <span>\\((-\\Delta_p)^s u=f\\)</span> where <span>\\(p &gt; 1, s\\in (0, 1)\\)</span> and <span>\\(f\\in L^\\infty_{\\rm loc}(\\Omega)\\)</span>. Specifically, we prove that <span>\\(u\\in C^{0, \\gamma_\\circ}_{\\rm loc}(\\Omega)\\)</span> for <span>\\(\\gamma_\\circ=\\min\\{1, \\frac{sp}{p-1}\\}\\)</span>, provided that <span>\\(\\frac{sp}{p-1}\\neq 1\\)</span>. In particular, it shows that <span>\\(u\\)</span> is locally Lipschitz for <span>\\(\\frac{sp}{p-1} &gt; 1\\)</span>. Moreover, we show that for <span>\\(\\frac{sp}{p-1}=1\\)</span>, the solution is locally Lipschitz, provided that <span>\\(f\\)</span> is locally Hölder continuous. Additionally, we discuss further regularity results for the fractional double-phase problems.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"11 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-025-00220-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we investigate the Hölder regularity of the fractional \(p\)-Laplace equation of the form \((-\Delta_p)^s u=f\) where \(p > 1, s\in (0, 1)\) and \(f\in L^\infty_{\rm loc}(\Omega)\). Specifically, we prove that \(u\in C^{0, \gamma_\circ}_{\rm loc}(\Omega)\) for \(\gamma_\circ=\min\{1, \frac{sp}{p-1}\}\), provided that \(\frac{sp}{p-1}\neq 1\). In particular, it shows that \(u\) is locally Lipschitz for \(\frac{sp}{p-1} > 1\). Moreover, we show that for \(\frac{sp}{p-1}=1\), the solution is locally Lipschitz, provided that \(f\) is locally Hölder continuous. Additionally, we discuss further regularity results for the fractional double-phase problems.

分数阶p-拉普拉斯算子的Lipschitz正则性
在本文中,我们研究了分数阶\(p\) -拉普拉斯方程的Hölder正则性,其形式为\((-\Delta_p)^s u=f\),其中\(p > 1, s\in (0, 1)\)和\(f\in L^\infty_{\rm loc}(\Omega)\)。具体地说,我们证明了\(u\in C^{0, \gamma_\circ}_{\rm loc}(\Omega)\)对于\(\gamma_\circ=\min\{1, \frac{sp}{p-1}\}\),假设\(\frac{sp}{p-1}\neq 1\)。特别地,它表明\(u\)是\(\frac{sp}{p-1} > 1\)的局部Lipschitz。此外,我们证明了对于\(\frac{sp}{p-1}=1\),解是局部Lipschitz,假设\(f\)是局部Hölder连续的。此外,我们进一步讨论了分数双相问题的正则性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信