Correlation time in extremal self-organized critical models

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Rahul Chhimpa, Abha Singh, Avinash Chand Yadav
{"title":"Correlation time in extremal self-organized critical models","authors":"Rahul Chhimpa,&nbsp;Abha Singh,&nbsp;Avinash Chand Yadav","doi":"10.1140/epjb/s10051-025-00988-1","DOIUrl":null,"url":null,"abstract":"<p>We investigate correlation time numerically in extremal self-organized critical models, namely the Bak–Sneppen evolution and the Robin Hood dynamics. The (fitness) correlation time is the duration required for the extinction or mutation of species over the entire spatial region in the critical state. We apply the methods of finite-size scaling and extreme value theory to understand the statistics of the correlation time. We find power-law system size scaling behaviors for the mean, the variance, the mode, and the peak probability of the correlation time. We obtain data collapse for the correlation time cumulative probability distribution, and the scaling function follows the generalized extreme value density close to the Gumbel function.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-00988-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate correlation time numerically in extremal self-organized critical models, namely the Bak–Sneppen evolution and the Robin Hood dynamics. The (fitness) correlation time is the duration required for the extinction or mutation of species over the entire spatial region in the critical state. We apply the methods of finite-size scaling and extreme value theory to understand the statistics of the correlation time. We find power-law system size scaling behaviors for the mean, the variance, the mode, and the peak probability of the correlation time. We obtain data collapse for the correlation time cumulative probability distribution, and the scaling function follows the generalized extreme value density close to the Gumbel function.

极端自组织临界模型的相关时间
我们研究了极端自组织临界模型的相关时间,即baker - sneppen演化和罗宾汉动力学。适应度相关时间是临界状态下整个空间区域内物种灭绝或突变所需的时间。我们应用有限尺度和极值理论的方法来理解相关时间的统计。我们发现幂律系统大小的缩放行为的均值,方差,模式,和相关时间的峰值概率。我们得到了相关时间累积概率分布的数据坍缩,尺度函数遵循接近Gumbel函数的广义极值密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信