Photothermal magnetic Janus fabric vs cast membranes and their application in solar-based desalination

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES
Norhan Nady, Nourhan Rashad, Noha Salem, Marwa Showman, Mohamed R. Elmarghany, Mohamed Salem, Ahmed M. Hamed, Sherif. H. Kandil
{"title":"Photothermal magnetic Janus fabric vs cast membranes and their application in solar-based desalination","authors":"Norhan Nady,&nbsp;Nourhan Rashad,&nbsp;Noha Salem,&nbsp;Marwa Showman,&nbsp;Mohamed R. Elmarghany,&nbsp;Mohamed Salem,&nbsp;Ahmed M. Hamed,&nbsp;Sherif. H. Kandil","doi":"10.1007/s13201-025-02531-0","DOIUrl":null,"url":null,"abstract":"<div><p>Water shortage poses a significant global challenge, and there is a pressing need for effective and sustainable desalination technologies that do not require brine disposal. In this study, we fabricated fiber membranes using a mixture of poly(vinylidene fluoride)-co-hexafluoropropylene (PcH) and poly(ethersulfone) (PES) polymers, incorporating black magnetic iron-nickel alloy nanoparticles at high molar ratios of Ni to Fe (90:10 and 80:20). The nanoparticles were integrated into the PcH/PES blend in two ways: (1) as a coating layer on the prepared fibers, and (2) both as a coating layer and dispersed within the PcH/PES polymer dope. The resulting fiber membranes were analyzed using various techniques, and their solar absorption capacity was assessed. This innovative approach of incorporating black magnetic iron-nickel alloy nanoparticles as photothermal agents into electrospun polymer fiber membranes was compared to our previous work on cast membranes made from the same iron-nickel/PcH/PES composite dope. This study reinforces the idea that increased thickness of the cast membranes can enable them to function as 3D blocks, enhancing solar heat concentration and, in turn, boosting the water evaporation rate. This study highlights our ongoing efforts to develop advanced materials and designs for effective solar-driven membrane distillation technology. </p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 7","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-025-02531-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-025-02531-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

Water shortage poses a significant global challenge, and there is a pressing need for effective and sustainable desalination technologies that do not require brine disposal. In this study, we fabricated fiber membranes using a mixture of poly(vinylidene fluoride)-co-hexafluoropropylene (PcH) and poly(ethersulfone) (PES) polymers, incorporating black magnetic iron-nickel alloy nanoparticles at high molar ratios of Ni to Fe (90:10 and 80:20). The nanoparticles were integrated into the PcH/PES blend in two ways: (1) as a coating layer on the prepared fibers, and (2) both as a coating layer and dispersed within the PcH/PES polymer dope. The resulting fiber membranes were analyzed using various techniques, and their solar absorption capacity was assessed. This innovative approach of incorporating black magnetic iron-nickel alloy nanoparticles as photothermal agents into electrospun polymer fiber membranes was compared to our previous work on cast membranes made from the same iron-nickel/PcH/PES composite dope. This study reinforces the idea that increased thickness of the cast membranes can enable them to function as 3D blocks, enhancing solar heat concentration and, in turn, boosting the water evaporation rate. This study highlights our ongoing efforts to develop advanced materials and designs for effective solar-driven membrane distillation technology.

光热磁性Janus织物与铸造膜及其在太阳能脱盐中的应用
水资源短缺是一个重大的全球挑战,迫切需要不需要处理盐水的有效和可持续的海水淡化技术。在这项研究中,我们使用聚偏氟乙烯-共六氟丙烯(PcH)和聚醚砜(PES)聚合物的混合物制备纤维膜,并在Ni与Fe的高摩尔比(90:10和80:20)下加入黑色磁性铁镍合金纳米颗粒。将纳米颗粒以两种方式集成到PcH/PES共混物中:(1)作为制备纤维的涂层;(2)作为涂层并分散在PcH/PES聚合物涂料中。利用各种技术对所得纤维膜进行了分析,并对其太阳能吸收能力进行了评估。这种将黑色磁性铁镍合金纳米颗粒作为光热剂加入到电纺丝聚合物纤维膜中的创新方法,与我们之前使用相同的铁镍/PcH/PES复合涂料制成的铸膜进行了比较。这项研究强化了这样一种观点,即增加铸膜的厚度可以使它们像3D块一样发挥作用,从而增强太阳热量的集中,进而提高水的蒸发速度。这项研究突出了我们为有效的太阳能驱动膜蒸馏技术开发先进材料和设计的持续努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信