Operator relations characterizing higher-order differential operators

IF 0.6 3区 数学 Q3 MATHEMATICS
W. Fechner, E. Gselmann, A. Świątczak-Kolenda
{"title":"Operator relations characterizing higher-order differential operators","authors":"W. Fechner,&nbsp;E. Gselmann,&nbsp;A. Świątczak-Kolenda","doi":"10.1007/s10474-025-01540-4","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(r\\)</span> be a positive integer, <span>\\(N\\)</span> a nonnegative integer and <span>\\(\\Omega \\subset \\mathbb{R}^{r}\\)</span> be a domain. Further, for all multi-indices <span>\\(\\alpha \\in \\mathbb{N}^{r}\\)</span>, <span>\\(|\\alpha|\\leq N\\)</span>, let us consider the partial differential operator <span>\\(D^{\\alpha}\\)</span> defined by \n<span>\\(D^{\\alpha}= \\frac{\\partial^{|\\alpha|}}{\\partial x_{1}^{\\alpha_{1}}\\cdots \\partial x_{r}^{\\alpha_{r}}},\\)</span>where <span>\\(\\alpha= (\\alpha_{1}, \\ldots, \\alpha_{r})\\)</span>. Here, by definition, we mean <span>\\(D^{0}\\equiv \\mathrm{id}\\)</span>. \nA straightforward computation shows that if <span>\\(f, g\\in \\mathscr{C}^{N}(\\Omega)\\)</span> and <span>\\(\\alpha \\in \\mathbb{N}^{r}\\)</span> with <span>\\(|\\alpha|\\leq N\\)</span>, then we have \n</p><div><div><span>$$D^{\\alpha}(f\\cdot g) = \\sum_{\\beta\\leq \\alpha}\\binom{\\alpha}{\\beta}D^{\\beta}(f)\\cdot D^{\\alpha - \\beta}(g).$$</span></div><div>\n (*)\n </div></div><p>\nThis paper is devoted to the study of the identity <span>\\((\\ast)\\)</span> in the space <span>\\(\\mathscr{C}(\\Omega)\\)</span>. More precisely, if <span>\\(r\\)</span> is a positive integer, <span>\\(N\\)</span> is a nonnegative integer and <span>\\(\\Omega \\subset \\mathbb{R}^{r}\\)</span> is a domain, then we describe all mappings (not necessarily linear) that satisfy the identity <span>\\((\\ast)\\)</span> for all possible multi-indices <span>\\(\\alpha\\in \\mathbb{N}^{r}\\)</span>, <span>\\(|\\alpha|\\leq N\\)</span>. Our main result states that if the domain is <span>\\(\\mathscr{C}(\\Omega)\\)</span>,\nthen the mappings in question take a particularly specific form. Related results for the space <span>\\(\\mathscr{C}^{N}(\\Omega)\\)</span> are also presented. </p></div>","PeriodicalId":50894,"journal":{"name":"Acta Mathematica Hungarica","volume":"176 1","pages":"264 - 275"},"PeriodicalIF":0.6000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10474-025-01540-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10474-025-01540-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(r\) be a positive integer, \(N\) a nonnegative integer and \(\Omega \subset \mathbb{R}^{r}\) be a domain. Further, for all multi-indices \(\alpha \in \mathbb{N}^{r}\), \(|\alpha|\leq N\), let us consider the partial differential operator \(D^{\alpha}\) defined by \(D^{\alpha}= \frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}}\cdots \partial x_{r}^{\alpha_{r}}},\)where \(\alpha= (\alpha_{1}, \ldots, \alpha_{r})\). Here, by definition, we mean \(D^{0}\equiv \mathrm{id}\). A straightforward computation shows that if \(f, g\in \mathscr{C}^{N}(\Omega)\) and \(\alpha \in \mathbb{N}^{r}\) with \(|\alpha|\leq N\), then we have

$$D^{\alpha}(f\cdot g) = \sum_{\beta\leq \alpha}\binom{\alpha}{\beta}D^{\beta}(f)\cdot D^{\alpha - \beta}(g).$$
(*)

This paper is devoted to the study of the identity \((\ast)\) in the space \(\mathscr{C}(\Omega)\). More precisely, if \(r\) is a positive integer, \(N\) is a nonnegative integer and \(\Omega \subset \mathbb{R}^{r}\) is a domain, then we describe all mappings (not necessarily linear) that satisfy the identity \((\ast)\) for all possible multi-indices \(\alpha\in \mathbb{N}^{r}\), \(|\alpha|\leq N\). Our main result states that if the domain is \(\mathscr{C}(\Omega)\), then the mappings in question take a particularly specific form. Related results for the space \(\mathscr{C}^{N}(\Omega)\) are also presented.

表征高阶微分算子的算子关系
设\(r\)为正整数,\(N\)为非负整数,\(\Omega \subset \mathbb{R}^{r}\)为域。此外,对于所有多索引\(\alpha \in \mathbb{N}^{r}\), \(|\alpha|\leq N\),让我们考虑由\(D^{\alpha}= \frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}}\cdots \partial x_{r}^{\alpha_{r}}},\)定义的偏微分算子\(D^{\alpha}\),其中\(\alpha= (\alpha_{1}, \ldots, \alpha_{r})\)。这里,根据定义,我们指的是\(D^{0}\equiv \mathrm{id}\)。一个简单的计算表明,如果\(f, g\in \mathscr{C}^{N}(\Omega)\)和\(\alpha \in \mathbb{N}^{r}\)同\(|\alpha|\leq N\),则有$$D^{\alpha}(f\cdot g) = \sum_{\beta\leq \alpha}\binom{\alpha}{\beta}D^{\beta}(f)\cdot D^{\alpha - \beta}(g).$$(*)本文致力于研究空间\(\mathscr{C}(\Omega)\)中的恒等式\((\ast)\)。更准确地说,如果\(r\)是一个正整数,\(N\)是一个非负整数,\(\Omega \subset \mathbb{R}^{r}\)是一个域,那么我们描述所有可能的多索引\(\alpha\in \mathbb{N}^{r}\), \(|\alpha|\leq N\)下满足单位\((\ast)\)的所有映射(不一定是线性的)。我们的主要结果表明,如果域是\(\mathscr{C}(\Omega)\),那么所讨论的映射将采用特别特定的形式。还介绍了空间\(\mathscr{C}^{N}(\Omega)\)的相关结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
77
审稿时长
4-8 weeks
期刊介绍: Acta Mathematica Hungarica is devoted to publishing research articles of top quality in all areas of pure and applied mathematics as well as in theoretical computer science. The journal is published yearly in three volumes (two issues per volume, in total 6 issues) in both print and electronic formats. Acta Mathematica Hungarica (formerly Acta Mathematica Academiae Scientiarum Hungaricae) was founded in 1950 by the Hungarian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信