Xu Zeng, Bo Wang, Yan Li, Xin Zhang, Hong Zhang, Bo Ren, Meiqing Fan, Xiaodong Yang
{"title":"Removal of cefalexin from aqueous solutions using modified corn stalk-based biochar","authors":"Xu Zeng, Bo Wang, Yan Li, Xin Zhang, Hong Zhang, Bo Ren, Meiqing Fan, Xiaodong Yang","doi":"10.1007/s13399-025-06798-w","DOIUrl":null,"url":null,"abstract":"<div><p>With the widespread use of antibiotics, the emergence and spread of drug-resistant bacteria have become a serious challenge in the global public health field. In addition, the incineration of agricultural waste straw can cause air pollution and trigger forest fires. It is urgent to build solutions to address these issues. Three types of biochar were prepared by treating corn stover with phosphoric acid, sodium hydroxide, and zinc chloride, respectively. The adsorption capacity of cefalexin, a first-generation oral antibiotic, was compared across the three types of biochar. The results indicated that biochar activated with zinc chloride exhibits higher mesoporous content and enhanced adsorption activity. Its specific surface area has reached 1494.9 m<sup>2</sup>/g. This study explored the effects of initial cefalexin concentration and reaction time on adsorption kinetics and equilibrium isotherms. The experimental isotherm data for cefalexin adsorption on biochar were analyzed using Langmuir and Freundlich isotherms. The adsorption isotherm conforms to the Langmuir model, and the maximum adsorption capacity of 230.88 mg/g. The adsorption process was very consistent with the pseudo-second-order dynamic model. This research result indicate that biochar prepared from corn straw cores has a high specific surface area and strong adsorption performance, making it a promising technology for removing antibiotics from aqueous solutions.</p></div>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"15 16","pages":"23017 - 23027"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13399-025-06798-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
With the widespread use of antibiotics, the emergence and spread of drug-resistant bacteria have become a serious challenge in the global public health field. In addition, the incineration of agricultural waste straw can cause air pollution and trigger forest fires. It is urgent to build solutions to address these issues. Three types of biochar were prepared by treating corn stover with phosphoric acid, sodium hydroxide, and zinc chloride, respectively. The adsorption capacity of cefalexin, a first-generation oral antibiotic, was compared across the three types of biochar. The results indicated that biochar activated with zinc chloride exhibits higher mesoporous content and enhanced adsorption activity. Its specific surface area has reached 1494.9 m2/g. This study explored the effects of initial cefalexin concentration and reaction time on adsorption kinetics and equilibrium isotherms. The experimental isotherm data for cefalexin adsorption on biochar were analyzed using Langmuir and Freundlich isotherms. The adsorption isotherm conforms to the Langmuir model, and the maximum adsorption capacity of 230.88 mg/g. The adsorption process was very consistent with the pseudo-second-order dynamic model. This research result indicate that biochar prepared from corn straw cores has a high specific surface area and strong adsorption performance, making it a promising technology for removing antibiotics from aqueous solutions.
期刊介绍:
Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.