Syed Mohd Danish Rizvi, Amr Selim Abu Lila, Afrasim Moin, Shahanawaz Syed, Daniya Fatima, El-Sayed Khafagy, Azza A. H. Rajab, Wael A. H. Hegazy
{"title":"Repositioning of fluoxetine as anti-virulence agent against Pseudomonas aeruginosa","authors":"Syed Mohd Danish Rizvi, Amr Selim Abu Lila, Afrasim Moin, Shahanawaz Syed, Daniya Fatima, El-Sayed Khafagy, Azza A. H. Rajab, Wael A. H. Hegazy","doi":"10.1186/s43094-025-00833-3","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The bacterial resistance is an increasing obstacle against the global health that necessitates innovation of new approaches. Targeting bacterial resistance is one of the promising approaches. <i>Pseudomonas aeruginosa</i> is a clinically significant opportunistic pathogen and causes wide diverse of illness. The <i>P. aeruginosa</i> virulence is regulated by several systems as quorum sensing (QS) systems. Additionally<i>, P. aeruginosa</i> could employ membranal sensors to sense the neurotransmitters enhancing the virulence. Fluoxetine (FLU), an antidepressant, functions by inhibiting the reuptake of the neurotransmitter serotonin. This study aimed to assess the anti-virulence activity of FLU against <i>P. aeruginosa</i>. The effect of FLU at sub-inhibitory concentration was evaluated on the biofilm formation, removal of preformed biofilms, production of virulence factors such as protease, hemolysins, elastase, rhamnolipids, motility, pyocyanin, and pyoverdine. The impact of FLU on the expression of virulence-related genes was estimated. An invasion assay and mice protection assay were conducted to assess the FLU’s diminishing effect on <i>P. aeruginosa</i> pathogenesis.</p><h3>Results</h3><p>The results showed significant ability of FLU to inhibit the biofilm formation, bacterial motility, and production of virulence factors. These antibiofilm and anti-virulence activities of FLU were owed to the downregulation of genes involved in expression of QS systems and bacterial espionage. FLU significantly lowered the bacterial invasion and protected mice from <i>P. aeruginosa.</i> Additionally, synergistic outcome was obtained when FLU was combined with antibiotics.</p><h3>Conclusion</h3><p>FLU exhibits potent antibiofilm and anti-virulence effects at sub-MIC levels, likely mediated by its inhibition of QS systems. These results position FLU as a promising candidate for adjuvant therapy against drug-resistant <i>P. aeruginosa</i> infections.</p></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"11 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-025-00833-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-025-00833-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The bacterial resistance is an increasing obstacle against the global health that necessitates innovation of new approaches. Targeting bacterial resistance is one of the promising approaches. Pseudomonas aeruginosa is a clinically significant opportunistic pathogen and causes wide diverse of illness. The P. aeruginosa virulence is regulated by several systems as quorum sensing (QS) systems. Additionally, P. aeruginosa could employ membranal sensors to sense the neurotransmitters enhancing the virulence. Fluoxetine (FLU), an antidepressant, functions by inhibiting the reuptake of the neurotransmitter serotonin. This study aimed to assess the anti-virulence activity of FLU against P. aeruginosa. The effect of FLU at sub-inhibitory concentration was evaluated on the biofilm formation, removal of preformed biofilms, production of virulence factors such as protease, hemolysins, elastase, rhamnolipids, motility, pyocyanin, and pyoverdine. The impact of FLU on the expression of virulence-related genes was estimated. An invasion assay and mice protection assay were conducted to assess the FLU’s diminishing effect on P. aeruginosa pathogenesis.
Results
The results showed significant ability of FLU to inhibit the biofilm formation, bacterial motility, and production of virulence factors. These antibiofilm and anti-virulence activities of FLU were owed to the downregulation of genes involved in expression of QS systems and bacterial espionage. FLU significantly lowered the bacterial invasion and protected mice from P. aeruginosa. Additionally, synergistic outcome was obtained when FLU was combined with antibiotics.
Conclusion
FLU exhibits potent antibiofilm and anti-virulence effects at sub-MIC levels, likely mediated by its inhibition of QS systems. These results position FLU as a promising candidate for adjuvant therapy against drug-resistant P. aeruginosa infections.
期刊介绍:
Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.