Non-radial positive and sign-changing solutions for the FitzHugh–Nagumo system in \(\mathbb {R}^N\)

IF 0.9 3区 数学 Q1 MATHEMATICS
Weihong Xie, Mingzhu Yu
{"title":"Non-radial positive and sign-changing solutions for the FitzHugh–Nagumo system in \\(\\mathbb {R}^N\\)","authors":"Weihong Xie,&nbsp;Mingzhu Yu","doi":"10.1007/s10231-025-01548-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we present the existence of infinitely many non-radial positive or sign-changing solutions for the following FitzHugh–Nagumosystem: </p><div><div><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} \\Delta u-a(|x|)u+g(u)-\\delta v=0, \\quad &amp; x\\in \\mathbb {R}^N,\\\\ \\Delta v+u=0, &amp; x\\in \\mathbb {R}^N,\\\\ u(x), ~v(x)\\rightarrow 0, &amp; \\text{ as }~ |x|\\rightarrow +\\infty ,\\\\ \\end{array}\\right. \\end{aligned}$$</span></div></div><p>where <span>\\(N\\ge 5\\)</span>, <span>\\(\\delta &gt;0\\)</span>, <span>\\(g(u)=(a_0+1)u^2-u^3\\)</span>, <span>\\(0&lt;a_0&lt;\\frac{1}{2}\\)</span> and <span>\\(a(|x|)\\in (0,\\frac{1}{2})\\)</span> satisfies some decay conditions at the infinity. More precisely, for any positive integer <i>k</i> large, there is a <span>\\(\\delta _k&gt;0\\)</span> such that for <span>\\(0&lt;\\delta &lt;\\delta _k\\)</span>, there exists positive solutions with 2<i>k</i> peaks, which are respectively concentrated at the vertices of a regular <i>k</i>-polygon on two circles in 3-dimensional space with the radium <span>\\(r\\sim k \\ln k\\)</span> and the height <span>\\(h\\sim \\frac{1}{k}\\)</span>. In addition, the sign-changing solutions with 2<i>k</i> peaks are evenly distributed on the equatorial <span>\\(\\textrm{T}=\\{x\\in \\mathbb {R}^2:x_1^2+x_2^2=r^2\\}\\)</span> in the <span>\\((x_1, x_2)\\)</span>-plane. As a by-product, we give the similar results of Schödinger-Poisson in <span>\\(\\mathbb {R}^N\\)</span> for <span>\\(N\\ge 3\\)</span>.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 4","pages":"1795 - 1826"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-025-01548-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we present the existence of infinitely many non-radial positive or sign-changing solutions for the following FitzHugh–Nagumosystem:

$$\begin{aligned} \left\{ \begin{array}{ll} \Delta u-a(|x|)u+g(u)-\delta v=0, \quad & x\in \mathbb {R}^N,\\ \Delta v+u=0, & x\in \mathbb {R}^N,\\ u(x), ~v(x)\rightarrow 0, & \text{ as }~ |x|\rightarrow +\infty ,\\ \end{array}\right. \end{aligned}$$

where \(N\ge 5\), \(\delta >0\), \(g(u)=(a_0+1)u^2-u^3\), \(0<a_0<\frac{1}{2}\) and \(a(|x|)\in (0,\frac{1}{2})\) satisfies some decay conditions at the infinity. More precisely, for any positive integer k large, there is a \(\delta _k>0\) such that for \(0<\delta <\delta _k\), there exists positive solutions with 2k peaks, which are respectively concentrated at the vertices of a regular k-polygon on two circles in 3-dimensional space with the radium \(r\sim k \ln k\) and the height \(h\sim \frac{1}{k}\). In addition, the sign-changing solutions with 2k peaks are evenly distributed on the equatorial \(\textrm{T}=\{x\in \mathbb {R}^2:x_1^2+x_2^2=r^2\}\) in the \((x_1, x_2)\)-plane. As a by-product, we give the similar results of Schödinger-Poisson in \(\mathbb {R}^N\) for \(N\ge 3\).

中FitzHugh-Nagumo系统的非径向正解和变号解 \(\mathbb {R}^N\)
本文给出了下述FitzHugh-Nagumosystem: $$\begin{aligned} \left\{ \begin{array}{ll} \Delta u-a(|x|)u+g(u)-\delta v=0, \quad & x\in \mathbb {R}^N,\\ \Delta v+u=0, & x\in \mathbb {R}^N,\\ u(x), ~v(x)\rightarrow 0, & \text{ as }~ |x|\rightarrow +\infty ,\\ \end{array}\right. \end{aligned}$$的无穷多个非径向正解或变号解的存在性,其中\(N\ge 5\), \(\delta >0\), \(g(u)=(a_0+1)u^2-u^3\), \(0<a_0<\frac{1}{2}\)和\(a(|x|)\in (0,\frac{1}{2})\)满足无穷远处的某些衰减条件。更准确地说,对于任意一个k大的正整数,存在一个\(\delta _k>0\),使得对于\(0<\delta <\delta _k\),存在有2k个峰的正解,这些峰分别集中在镭为\(r\sim k \ln k\),高度为\(h\sim \frac{1}{k}\)的三维空间中的两个圆上的正k多边形的顶点上。另外,有2k个峰的变号解均匀分布在\((x_1, x_2)\) -平面的赤道\(\textrm{T}=\{x\in \mathbb {R}^2:x_1^2+x_2^2=r^2\}\)上。作为一个副产品,我们给出了类似的结果Schödinger-Poisson在\(\mathbb {R}^N\)为\(N\ge 3\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信