Optoelectronic devices with tunable bandgap using hybrid organic–inorganic perovskites

IF 3.4 4区 工程技术 Q2 POLYMER SCIENCE
Abdullah A. Alatawi
{"title":"Optoelectronic devices with tunable bandgap using hybrid organic–inorganic perovskites","authors":"Abdullah A. Alatawi","doi":"10.1007/s13233-025-00372-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a comprehensive investigation into hybrid organic–inorganic perovskites (HOIPs) with tunable bandgap properties, advancing the field of optoelectronic devices. Unlike previous works that often lacked reproducibility or focused solely on material-level optimizations, we demonstrate precise bandgap control ranging from 1.55 eV to 2.10 eV using a novel layer-by-layer sequential deposition technique. This approach ensures consistent material quality with high crystallinity, confirmed by XRD and SEM analyses, and uniform grain sizes of 200 nm, leading to enhanced charge transport efficiency. In addition, we integrate these optimized perovskites into functional devices, including solar cells, LEDs, and photodetectors, achieving a charge transport efficiency retention of 90% after 72 h and 85% device performance retention after 1000 h under environmental stress. Dual characterization methods, utilizing UV–visible spectroscopy and photoluminescence (PL), provide a robust assessment of bandgap tunability and optical properties. Our encapsulation techniques significantly improve environmental stability, addressing a critical limitation of previous works. The study also demonstrates the scalability of the synthesis process, enabling versatile applications in energy conversion and light-emitting technologies. These contributions establish a pathway for developing highly efficient, durable, and cost-effective optoelectronic devices, paving the way for next-generation perovskite-based applications.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Layer-by-layer fabrication of hybrid organic-inorganic perovskites with tunable bandgaps for high-efficiency, stable optoelectronic devices</p></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"33 7","pages":"871 - 893"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13233-025-00372-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comprehensive investigation into hybrid organic–inorganic perovskites (HOIPs) with tunable bandgap properties, advancing the field of optoelectronic devices. Unlike previous works that often lacked reproducibility or focused solely on material-level optimizations, we demonstrate precise bandgap control ranging from 1.55 eV to 2.10 eV using a novel layer-by-layer sequential deposition technique. This approach ensures consistent material quality with high crystallinity, confirmed by XRD and SEM analyses, and uniform grain sizes of 200 nm, leading to enhanced charge transport efficiency. In addition, we integrate these optimized perovskites into functional devices, including solar cells, LEDs, and photodetectors, achieving a charge transport efficiency retention of 90% after 72 h and 85% device performance retention after 1000 h under environmental stress. Dual characterization methods, utilizing UV–visible spectroscopy and photoluminescence (PL), provide a robust assessment of bandgap tunability and optical properties. Our encapsulation techniques significantly improve environmental stability, addressing a critical limitation of previous works. The study also demonstrates the scalability of the synthesis process, enabling versatile applications in energy conversion and light-emitting technologies. These contributions establish a pathway for developing highly efficient, durable, and cost-effective optoelectronic devices, paving the way for next-generation perovskite-based applications.

Graphical abstract

Layer-by-layer fabrication of hybrid organic-inorganic perovskites with tunable bandgaps for high-efficiency, stable optoelectronic devices

Abstract Image

利用杂化有机-无机钙钛矿的可调带隙光电器件
该研究对具有可调带隙特性的杂化有机-无机钙钛矿(HOIPs)进行了全面的研究,推动了光电器件领域的发展。与以往的工作不同,通常缺乏可重复性或只关注材料级优化,我们利用一种新颖的逐层顺序沉积技术,展示了从1.55 eV到2.10 eV的精确带隙控制。通过XRD和SEM分析证实,该方法确保了材料质量的一致性,具有高结晶度,并且晶粒尺寸均匀,为200 nm,从而提高了电荷传输效率。此外,我们将这些优化的钙钛矿集成到功能器件中,包括太阳能电池、led和光电探测器,在环境压力下,72小时后电荷传输效率保持90%,1000小时后器件性能保持85%。利用紫外-可见光谱和光致发光(PL)的双重表征方法,提供了对带隙可调性和光学特性的可靠评估。我们的封装技术显著提高了环境稳定性,解决了以前工作的一个关键限制。该研究还证明了合成过程的可扩展性,使能量转换和发光技术的多功能应用成为可能。这些贡献为开发高效、耐用和具有成本效益的光电器件开辟了道路,为下一代钙钛矿基应用铺平了道路。具有可调带隙的杂化有机-无机钙钛矿的逐层制备,用于高效、稳定的光电器件
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Research
Macromolecular Research 工程技术-高分子科学
CiteScore
4.70
自引率
8.30%
发文量
100
审稿时长
1.3 months
期刊介绍: Original research on all aspects of polymer science, engineering and technology, including nanotechnology Presents original research articles on all aspects of polymer science, engineering and technology Coverage extends to such topics as nanotechnology, biotechnology and information technology The English-language journal of the Polymer Society of Korea Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信