Exploring the Energy Landscape of the Thomson Problem: Local Minima and Stationary States

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Paolo Amore, Victor Figueroa, Enrique Diaz, Jorge A. López, Trevor Vincent
{"title":"Exploring the Energy Landscape of the Thomson Problem: Local Minima and Stationary States","authors":"Paolo Amore,&nbsp;Victor Figueroa,&nbsp;Enrique Diaz,&nbsp;Jorge A. López,&nbsp;Trevor Vincent","doi":"10.1007/s10955-025-03520-y","DOIUrl":null,"url":null,"abstract":"<div><p>We conducted a comprehensive numerical investigation of the energy landscape of the Thomson problem for systems up to <span>\\(N=150\\)</span>. Our results show the number of distinct configurations grows exponentially with <i>N</i>, but significantly faster than previously reported. Furthermore, we find that the average energy gap between independent configurations at a given <i>N</i> decays exponentially with <i>N</i>, dramatically increasing the computational complexity for larger systems. Finally, we developed a novel approach that reformulates the search for stationary points in the Thomson problem (or similar systems) as an equivalent minimization problem using a specifically designed potential. Leveraging this method, we performed a detailed exploration of the solution landscape for <span>\\(N\\le 24\\)</span> and estimated the growth of the number of stationary states to be exponential in <i>N</i>.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 10","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03520-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We conducted a comprehensive numerical investigation of the energy landscape of the Thomson problem for systems up to \(N=150\). Our results show the number of distinct configurations grows exponentially with N, but significantly faster than previously reported. Furthermore, we find that the average energy gap between independent configurations at a given N decays exponentially with N, dramatically increasing the computational complexity for larger systems. Finally, we developed a novel approach that reformulates the search for stationary points in the Thomson problem (or similar systems) as an equivalent minimization problem using a specifically designed potential. Leveraging this method, we performed a detailed exploration of the solution landscape for \(N\le 24\) and estimated the growth of the number of stationary states to be exponential in N.

探索汤姆逊问题的能量格局:局部极小和稳态
我们对直到\(N=150\)的系统的汤姆逊问题的能量景观进行了全面的数值研究。我们的结果表明,不同构型的数量随N呈指数增长,但明显快于先前的报道。此外,我们发现在给定N下,独立构型之间的平均能隙随N呈指数衰减,极大地增加了较大系统的计算复杂度。最后,我们开发了一种新的方法,将汤姆逊问题(或类似系统)中的平稳点的搜索重新表述为使用特定设计的势的等效最小化问题。利用这种方法,我们对\(N\le 24\)的解决方案进行了详细的探索,并估计固定状态的数量在N中呈指数增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信