{"title":"Analytical modeling of nonlinear absorption in Z-scan measurements using super-Gaussian beams","authors":"Ferhat Kessi","doi":"10.1007/s00340-025-08557-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a comprehensive theoretical and numerical investigation of multiphoton absorption (MPA) in Z-scan experiments using super-Gaussian laser beams. We developed an analytical model for normalized optical transmittance under weak nonlinearity approximation and performed extensive simulations examining the effects of varying MPA absorption order and super-Gaussian beam parameter. Our results reveal that flatter beam profiles consistently produce stronger nonlinear absorption effects across all multiphoton orders due to extended high-intensity regions that enhance interaction volumes. Lower-order MPA processes demonstrate greater overall absorption efficiency, with two-photon absorption showing the most dramatic transmittance reductions, while higher-order processes exhibit progressively weaker absorption despite their enhanced intensity sensitivity. Remarkably, while minimum transmittance varies significantly with beam profile, the Full Width at Half Maximum increases linearly with super-Gaussian parameters, revealing fundamental scaling relationships governing nonlinear interaction spatial extent. These findings establish important design principles for optical limiting systems, precision laser manufacturing, medical applications, and material characterization techniques, providing a comprehensive framework for optimizing nonlinear optical interactions through strategic beam profile selection and offering valuable insights for both fundamental research and practical applications in modern photonics.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"131 10","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-025-08557-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a comprehensive theoretical and numerical investigation of multiphoton absorption (MPA) in Z-scan experiments using super-Gaussian laser beams. We developed an analytical model for normalized optical transmittance under weak nonlinearity approximation and performed extensive simulations examining the effects of varying MPA absorption order and super-Gaussian beam parameter. Our results reveal that flatter beam profiles consistently produce stronger nonlinear absorption effects across all multiphoton orders due to extended high-intensity regions that enhance interaction volumes. Lower-order MPA processes demonstrate greater overall absorption efficiency, with two-photon absorption showing the most dramatic transmittance reductions, while higher-order processes exhibit progressively weaker absorption despite their enhanced intensity sensitivity. Remarkably, while minimum transmittance varies significantly with beam profile, the Full Width at Half Maximum increases linearly with super-Gaussian parameters, revealing fundamental scaling relationships governing nonlinear interaction spatial extent. These findings establish important design principles for optical limiting systems, precision laser manufacturing, medical applications, and material characterization techniques, providing a comprehensive framework for optimizing nonlinear optical interactions through strategic beam profile selection and offering valuable insights for both fundamental research and practical applications in modern photonics.
期刊介绍:
Features publication of experimental and theoretical investigations in applied physics
Offers invited reviews in addition to regular papers
Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more
94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again
Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field.
In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.