Effect of Annealing Temperature on Microstructure Evolution, Tensile Property and Deformation Behavior of Electron Beam Welded S32101 Joints

IF 4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xinghai Zhang, Haofei Zhu, Zhiping Xiong, Xingwang Cheng
{"title":"Effect of Annealing Temperature on Microstructure Evolution, Tensile Property and Deformation Behavior of Electron Beam Welded S32101 Joints","authors":"Xinghai Zhang,&nbsp;Haofei Zhu,&nbsp;Zhiping Xiong,&nbsp;Xingwang Cheng","doi":"10.1007/s12540-025-01891-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the effect of post-weld heat treatment (PWHT) on the microstructure and mechanical properties of the electron beam welding (EBW) joints was studied. The deformation behavior and fracture mechanism of the annealed joint was analyzed by the in-situ EBSD technology. The results demonstrated that the tensile properties of the EBW joints could be greatly improved by PWHT, especially the elongation increased from 8.0% without PWHT to 25.3% after annealing at 1080 ℃, and the tensile strength (TS) increased from 683 MPa to 727 MPa. After annealing, the texture of the ferrite was weakened. During in-situ tensile, a phase boundary was formed at the sharp corner of Widmanstätten austenite (WA) and the surrounding ferrite in accordance with the Nishiyama-Wassermann (N-W) orientation relationship, and the KAM value of ferrite near the phase boundary increased, with obvious stress concentration. Moreover, cracks nucleated and propagated at the interface between grain boundary austenite (GBA) and ferrite, and obvious necking occurred in the heat affected zone (HAZ) of the joint. Meanwhile, the original Kurdjumov-Sachs (K-S) boundaries changed into N-W boundaries with the increase of strain in the WA. The improvement of tensile properties could be attributed to the effects of an increase in austenite’s content and the twinning induced plasticity (TWIP) effect generated by austenite.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"31 8","pages":"2443 - 2459"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-025-01891-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the effect of post-weld heat treatment (PWHT) on the microstructure and mechanical properties of the electron beam welding (EBW) joints was studied. The deformation behavior and fracture mechanism of the annealed joint was analyzed by the in-situ EBSD technology. The results demonstrated that the tensile properties of the EBW joints could be greatly improved by PWHT, especially the elongation increased from 8.0% without PWHT to 25.3% after annealing at 1080 ℃, and the tensile strength (TS) increased from 683 MPa to 727 MPa. After annealing, the texture of the ferrite was weakened. During in-situ tensile, a phase boundary was formed at the sharp corner of Widmanstätten austenite (WA) and the surrounding ferrite in accordance with the Nishiyama-Wassermann (N-W) orientation relationship, and the KAM value of ferrite near the phase boundary increased, with obvious stress concentration. Moreover, cracks nucleated and propagated at the interface between grain boundary austenite (GBA) and ferrite, and obvious necking occurred in the heat affected zone (HAZ) of the joint. Meanwhile, the original Kurdjumov-Sachs (K-S) boundaries changed into N-W boundaries with the increase of strain in the WA. The improvement of tensile properties could be attributed to the effects of an increase in austenite’s content and the twinning induced plasticity (TWIP) effect generated by austenite.

Graphical Abstract

Abstract Image

退火温度对电子束焊接S32101接头组织演变、拉伸性能和变形行为的影响
本文研究了焊后热处理对电子束焊接接头显微组织和力学性能的影响。采用原位EBSD技术对退火接头的变形行为和断裂机理进行了分析。结果表明:经PWHT处理后,EBW接头的拉伸性能得到明显改善,伸长率由未加PWHT时的8.0%提高到1080℃退火后的25.3%,抗拉强度由683 MPa提高到727 MPa。退火后,铁素体的织构减弱。在原位拉伸过程中,在Widmanstätten奥氏体(WA)与周围铁素体的尖角处形成符合Nishiyama-Wassermann (N-W)取向关系的相边界,靠近相边界的铁素体KAM值增大,应力集中明显。裂纹在晶界奥氏体(GBA)和铁素体界面处形核扩展,在接头热影响区(HAZ)出现明显的颈缩。同时,随着西海应变的增加,原来的Kurdjumov-Sachs (K-S)边界转变为N-W边界。拉伸性能的提高可归因于奥氏体含量的增加和奥氏体产生的孪生诱导塑性效应。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信