An Efficient Computational Technique for Fractional Brusselator Reaction–Diffusion Equations

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Neha Kalyan, Sanjeev Ahuja, Amit Prakash
{"title":"An Efficient Computational Technique for Fractional Brusselator Reaction–Diffusion Equations","authors":"Neha Kalyan,&nbsp;Sanjeev Ahuja,&nbsp;Amit Prakash","doi":"10.1007/s10773-025-06020-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the fractional Brusselator reaction–diffusion equation with Caputo derivative by using a novel computational approach, the Laplace iterative method which integrates the Laplace transform and the Gejji-Jafari iterative method. The existence and uniqueness of the solutions are examined. The study presents two examples demonstrating the method’s capability to produce accurate numerical solutions with low error values, illustrated through comprehensive numerical analysis and graphical representations. The numerical results are compared with existing methods and exact solutions using three metrics: Root Mean Square, <span>\\({L}^{2},\\)</span> and <span>\\({L}^{\\infty }\\)</span> error norms. Additionally, consecutive errors are calculated to further validate the method's accuracy and reliability. Our findings indicate that the proposed method is a robust and efficient approach for solving the fractional Brusselator reaction–diffusion equation, contributing to the advancement of numerical methods in fractional calculus and reaction–diffusion modelling.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 7","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-06020-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the fractional Brusselator reaction–diffusion equation with Caputo derivative by using a novel computational approach, the Laplace iterative method which integrates the Laplace transform and the Gejji-Jafari iterative method. The existence and uniqueness of the solutions are examined. The study presents two examples demonstrating the method’s capability to produce accurate numerical solutions with low error values, illustrated through comprehensive numerical analysis and graphical representations. The numerical results are compared with existing methods and exact solutions using three metrics: Root Mean Square, \({L}^{2},\) and \({L}^{\infty }\) error norms. Additionally, consecutive errors are calculated to further validate the method's accuracy and reliability. Our findings indicate that the proposed method is a robust and efficient approach for solving the fractional Brusselator reaction–diffusion equation, contributing to the advancement of numerical methods in fractional calculus and reaction–diffusion modelling.

分数阶Brusselator反应扩散方程的高效计算技术
本文采用一种新颖的计算方法——集拉普拉斯变换和Gejji-Jafari迭代法于一体的拉普拉斯迭代法,研究了带有Caputo导数的分数阶Brusselator反应扩散方程。研究了解的存在唯一性。该研究给出了两个例子,通过全面的数值分析和图形表示来说明该方法能够产生精确的数值解和低误差值。利用均方根、\({L}^{2},\)和\({L}^{\infty }\)误差范数这三个指标,对现有方法的数值结果和精确解进行了比较。并对连续误差进行了计算,进一步验证了方法的准确性和可靠性。我们的研究结果表明,所提出的方法是求解分数阶Brusselator反应扩散方程的一种鲁棒且有效的方法,有助于分数阶微积分和反应扩散建模数值方法的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信